Traumatology

J. Mäurer, J. Rudolph, and J. Jerosch


2    Traumatology


Fractures



Definition


A fracture represents a complete or incomplete interruption of the continuity of bone with or without dislocation following direct or indirect force.


Pathology


Types of fractures


Image   Soft-tissue damage:



–   Closed fracture


–   Compound fracture


Image   Position of the fracture fragments:



–   Displaced fracture


–   Undisplaced fracture


Description of fractures


Image   Complete fractures:



–   Chisel fracture


–   Transverse fracture


–   Oblique fracture


–   Bow fracture


–   Torsion or spiral fracture


–   Segmental fracture


–   Comminuted fracture


–   Crash fracture (more than six fragments)


Image   Incomplete fractures:



–   Infraction


–   Fissure


Clinical Findings


Image   Deformity


Image   Abnormal mobility


Image   Crepitation


Image   Loss of function


Image   Local pain


Image   Local swelling


Diagnostic Evaluation


Image


Image   Location and extent of the fracture


Image   Description of the fracture:



–   Complete (simple fracture, crash fracture)


–   Incomplete (fissure, infraction)


Image   Location of the fracture line (articular involvement)


Image   Position of the fracture fragments:



–   Lateral displacement


–   Axial displacement


–   Peripheral displacement


Image   Determination of the fracture type (AO classification)


Image  Caution: Operator dependent


Image   Associated injuries:



–   Instability


–   Rotator-cuff injuries


–   Bicipital tendon injuries


–   Hematomas


–   Bursitis


–   Joint effusion


Image   Functional assessment


Image   Hill-Sachs lesion


Image   Avulsion of the greater tuberosity


Image   Fracture of the humeral head


Image   Separation of the acromioclavicular (AC) joint


Image


Image   Addition to projectional radiography (modifying the description of the fracture)


Image   Number, position, and relationship of the fracture fragments


Image   Articular involvement


Image   Rotatory displacement (antetorsion angle) and length discrepancy


Image   Surgical planning (2-D and 3-D reconstructions)


Image   Injuries of the labrum and joint capsule (computed tomography [CT]) arthrography)


Image   Associated injuries:



–   Instabilities


–   Rotator-cuff injuries


–   Bicipital tendon injuries


–   Hematomas


–   Bursitis


–   Joint effusion


Image


Image   Fatigue fracture (stress fracture)


Image   Occult fracture (bone bruise)


Image   Chondral fracture


Image   Associated injuries:



–   Instabilities


–   Rotator-cuff injuries


–   Bicipital tendon injuries


–   Hematomas


–   Bursitis


–   Joint effusion


Image   Functional assessment


Causes of Fractures


Traumatic Fractures



Definition


Traumatic fracture refers to a complete or incomplete break in the continuity of the bone caused by a direct or indirect sudden excessive strain on the physiological elasticity of the healthy bone.


Pathology


Image   Macroscopic:



–   Bone-marrow hematoma


–   Continuity break


–   Associated soft-tissue injuries


Image   Microscopic:



–   Hemorrhage and edema


–   Trabecular compression zones with continuity break


Clinical Findings


Image   Functional impairment


Image   Deformity


Image   Crepitation


Image   Local pain


Image   Local swelling


Goals of Imaging



Image   Delineation of the fracture fragments


Image   Relationship of the fracture fragments


Image   Possibility of a fracture classification


Image   Visualization of possible associated injuries


Therapeutic Principles



Image   Depending on the fracture type, conservative or surgical therapy


Diagnostic Evaluation


Image  (→ Method of choice)


Recommended views


Image   Standard projections:



–   Anteroposterior (AP) view in relation to the scapula


–   Tangential view of the glenoid fossa


–   Axial view


–   Transscapular view (“Y projection”)


–   Transthoracic view


Image   Special projections (depending on the location of the fracture):



–   AP view in abduction or elevation and external rotation (“Stryker’s notch view”)


–   Oblique apical view


–   Supraspinal outlet view


Image   Conventional tomography (position of the fragments and course of the fracture lines in complex fractures)


Findings


Image   Fracture lines in the region of the humeral head and neck, clavicle and scapula


Image   Hill-Sachs lesion


Image   Humeral head compression


Image   Bankart lesion


Image   Instability


Image   Fat-fluid level


Image  (→ Supplementary method)


Recommended planes


Image   Posterior transverse and longitudinal section


Image   Lateral longitudinal section (coronal view)


Image   Anterior and anteromedial transverse view


Image   Longitudinal section through the AC joint


Findings


Image   Sharply demarcated or shallow concave “indentation” of the humeral head (Hill-Sachs lesion and humeral head fracture)


Image  (→ Supplementary method)


Recommended protocol


Image   Standard CT:



–   Section thickness: 2–3 mm


–   Table feed: 2–3 mm


Image   Spiral CT:



–   Section thickness: 1–3 mm


–   Table feed: 2–5 mm


–   Increment: 1–3 mm


Findings


Image   Position and number of fragments


Image   Involvement of the articular surface (e.g., Bankart lesion)


Image  (→ Supplementary method)


Recommended sequences


Image   Short time inversion recovery (STIR) sequence


Image   T1- and T2-weighted tubo spin-echo (TSE) sequences (possibly with fat suppression)


Image   Administration of contrast medium only to delineate the fracture cleft


Findings


Image   T1-weighted spin-echo (SE) sequence:



–   Hypointense visualization of the fracture cleft


–   Diffuse hypointense visualization of the associated bone-marrow hematoma/edema


Image   T2-weighted SE sequence:



–   Hyperintense visualization of the fracture line


–   Diffuse hyperintense visualization of the associated bone-marrow hematoma/edema


Image   T1-weighted sequence after administration of contrast medium:



–   Strong diffuse contrast enhancement in the region of the associated bone-marrow hematoma/edema with hypointense demarcation of the fracture line


Pathological Fracture



Goals of Imaging



Image   Extension of the pathological process: intra-articular and/or extra-articular


Image   Local stability


Image   Additional soft-tissue involvement


Definition


Complete or incomplete break in the continuity of a locally or diffusely (insufficiency fracture) altered bone without adequate trauma (spontaneous fracture) or following an inadequate trauma.


Pathology


Image   Macroscopic:



–   Bone-marrow hematoma


–   Break in continuity with smoothly demarcated fracture ends, diastatic fracture line


–   Associated soft-tissue injuries


–   Destruction of the bone by the underlying disease process (osteoporosis, metastases, osteomyelitis, primary tumor, Paget disease)


Image   Microscopic:



–   Hemorrhage and edema


–   Trabecular compression zones with discontinuity


–   Absent callus formation


–   Specific histological documentation


Clinical Findings


Image   Functional impairment


Image   Deformity


Image   Crepitation


Image   Local pain


Image   Local swelling (possibly caused by the underlying pathology)


Diagnostic Evaluation


Image  (→ Initial method of choice)


Recommended views


Image   Standard views


Image   Special views (depending on the fracture location)


Image   Conventional tomography (position of the fragments and course of the fracture lines in complex fractures)


Findings


Image   Smoothly outlined fracture lines in the region of the humeral head and neck, clavicle and scapula, frequently dehiscent fracture cleft, absent callus formation


Image   Detectable soft-tissue density


Image


Recommended planes


Image   Posterior transverse and longitudinal sections


Image   Lateral longitudinal (coronal) section


Image   Anterior and anteromedial transverse section


Image   Longitudinal section through the AC joint


Findings


Image   Abrupt or shallow concave “indentation” at the fracture site


Image   Anechoic, hypoechoic, and hyperechoic soft-tissue formation (tumor mass and accompanying reaction)


Image  (→ Supplementary method)


Recommended protocol


Image   Standard parameters


Findings


Image   Location and number of fragments


Image   Detection of osseous destruction


Image   Detection of a soft-tissue mass


Image  (→ Method of choice for DD)


Recommended sequences


Image   STIR sequence


Image   T1- and T2-weighted sequences (possibly with fat suppression)


Image   Administration of contrast medium to delineate the fracture line and to visualize the intramedullary and extramedullar/ tumor component)


Findings


Image   T1-weighted SE sequence:



–   Hypointense visualization of the fracture line


–   Diffuse hypointense visualization of the associated bone-marrow hematoma and edema


–   Hypointense and/or hyperintense visualization of the intramedullary and extramedullary soft-tissue component of the tumor


Image   T2-weighted SE sequence:



–   Hyperintense visualization of the fracture line and the peritumoral edema


–   Diffuse hyperintense visualization of the associated bone-marrow hematoma and edema


–   Hypointense and/or hyperintense visualization of the intramedullary and extramedullary soft-tissue component of the tumor


Image   T1-weighted sequence after administration of contrast medium:



–   Strong diffuse enhancement in the region of the associated bone-marrow hematoma/edema with hypo-intense demarcation of the fracture line


–   Contrast enhancement in the region of the soft-tissue component of the tumor


Therapeutic Principles



Depending on the pathology, joint preservation or joint replacement therapy:


Image   Joint preservation: Internal fixation


Image   Joint replacement: Proximal humerus prosthesis, humerus prothesis, allograft reconstruction, composite allograft reconstruction, clavicle as humerus


Fatigue Fracture (Stress Fracture)



Definition


A fatigue fracture is a complete or incomplete break in the continuity of the healthy bone due to chronic strain (stress).


Pathology


Image   Macroscopic:



–   Endosteal or periosteal new bone formation


Image   Microscopic:



–   Adaptation through microfractures


–   Imbalance between osteoclastic and osteoblastic activity


–   Formation of osteoclastic zones of resorption with lamellate new bone formation


Clinical Findings


Image   Frequently clinically silent


Image   Localized pain


Image   Soft-tissue swelling


Image   Example: Fracture of the base of the coracoid process (“trap shooter’s fracture”)


Diagnostic Evaluation


Image


Image   Sensitivity between 20% and 50%


Recommended views


Image   Views in AP and lateral projection


Image   Special projections (depending on the location of the fracture)


Image   Conventional tomography (DD: osteoid osteoma, osteomyelitis)


Findings


Image   Lamellate periosteal reaction (early stage)


Image   Decreased density and indistinctness of the cortex (early stage)


Image   Reactive lamellate osteosclerotic osseous apposition with ossifying periostitis (late stage)


Image   Endosteal thickening (late stage)


Image   Indistinctly outlined sclerotic thickening within the spongiosa and cortex with central, especially dens striated sclerotic zone (correspond to the fracture line, late stage)


Image


Image   Usually no typical finding


Image   Anechoic, hypoechoic, and hyperechoic soft-tissue formation (accompanying reaction)


Image  (→ Method of choice)


Recommended protocol


Image   Standard parameters


Findings


Image   Detection of a fracture line with reactive sclerotic osseous changes


Image  (→ Method of choice for DD)


Recommended sequences


Image   STIR sequence


Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)


Image   Administration of contrast medium for the detection of the fracture line and for the DD (exclusion of tumor)


Findings


Image   T1-weighted SE sequence:



–   Hypointense visualization of the fracture line (not always discernible)


–   Hypointense areas of the associated bone-marrow edema


–   Hypointense display of the sclerotic zones in the region of the spongiosa and cortex


Image   T2-weighted SE sequence:



–   Hyperintense visualization of the fracture line (not always discernible)


–   Hyperintense areas of the associated bone-marrow edema


–   Hypointense display of the sclerotic zones in the region of the spongiosa and cortex


Image   T1-weighted sequence after administration of contrast medium:



–   Definite diffuse enhancement of the accompanying bone-marrow edema


–   Improved visualization of the fracture line (DD: osteomyelitis, osteoid osteoma)


–   No enhancement of the sclerotic zone


Goals of Imaging



Image   Visualization of structural changes


Image   Evaluation of stability


Therapeutic Principles



Image   Without displacement Immobilization


Image   With displacement Open reduction and osteosynthesis


Chondral and Osteochondral Fractures



Goals of Imaging



Image   Visualization of the defect and fragment


Image   Localization of the defect


Image   Determination of the size of defect and fragment


Therapeutic Principles



Image   Undisplaced fragments: Temporary immobilization


Image   Dislodged fragments: Open reduction and stabilization


Definition


Osteochondral fractures are caused by pressure on the cartilage due to shear and rotatory forces, which traumatize cartilage (chondral fracture) and sub-chondral bone (osteochondral fracture). Free, loose osteochondral fragments are occasionally found.


Pathology


Image   Compression with impaction and/or spongiosa (trabecular) fracture with intact overlying cartilage


Image   Isolated trauma to the articular cartilage


Clinical Findings


Image   Nonspecific (depending on the primary trauma)


Image   Hemarthrosis


Image   Weight-bearing pain


Image   Intermittent pain and articular locking


Diagnostic Evaluation


Image  (→ Initial method)


Recommended views


Image   Standard projections


Image   Special projections (depending on fracture location)


Image   Conventional tomography (DD: osteoid osteoma, osteomyelitis, and detection as well as visualization of the loose fragments)


Findings


Image   Irregular cortex


Image   Subchondral bone density


Image   Complete or partial dislodgement of the fragment


Image   Loose fragment


Image


Image   Usually no typical finding


Image   Anechoic, hypoechoic, and hyperechoic soft-tissue formation (accompanying reaction)


Image  (→ Supplementary method)


Image   Precise detection and localization of an osseous fragment


Image   DD of a subchondral sclerosis


Image  (→ Method of choice)


Recommended sequences


Image   STIR sequence


Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)


Image   Gradient-echo (GE) sequence for evaluation of the cartilage


Image   Administration of contrast medium to delineate the fracture line


Findings


Image   T1-weighted SE sequence:



–   Partially diffuse, partially reticular subchondral hypointense signal changes (“bone bruise,” accompanying edema)


–   Hypointense display of the fracture line


Image   T2-weighted SE sequence:



–   Partially diffuse, partially reticular subchondral hyperintense signal changes (“bone bruise,” accompanying edema)


–   Hyperintense display of the fracture line


Image   GE sequence:



–   Hypointense signal change amidst the hyperintense articular cartilage as manifestation of trauma


Image   T1-weighted sequence after administration of contrast medium:



–   Administration of contrast medium to delineate the fracture line


Occult Fracture (Bone Bruise)



Goals of Imaging



Image   Extent of the bone bruise


Image   Detection of cartilage lesion


Image   Exclusion of accompanying injuries


Definition


Bone bruise refers to a subchondral osseous contusion following trauma, which is only detectable by MRI. The classification of the bone bruise is not unanimous. Mink and Deutsch (1989) consider the bone bruise to be an occult fracture together with stress fractures, femoral and tibial fractures, as well as osteochondral fractures. Following trauma, the term “occult” refers to normal conventional radiographic findings in the presence of abnormal MRI findings.


Lynch and colleagues (1989) distinguish between two types of bone bruises:


Image   Type 1 is a bone-marrow contusion without cortical involvement


Image   Type 2 is a bone-marrow contusion with cortical discontinuity


Vellet and co-workers (1991) classify the bone bruise by the contusion pattern and location:


Image   The term “reticular bone bruise” is attributed to reticular MRI changes unrelated to the subchondral region


Image   The term “geographic bone bruise” describes focal discrete signal changes related to subchondral bone


Pathology


Image   Macroscopic:



–   Bone-marrow hematoma


Image   Microscopic:



–   Hemorrhage and edema


–   No trabecular compression


–   No detectable fracture line


Clinical Findings


Image   Local pain


Image   Local soft-tissue swelling


Image   Point tenderness


Image   Joint effusion


Diagnostic Evaluation


Image


Image   Usually no typical finding


Image   Local density due to regional soft-tissue swelling or joint effusion


Image


Image   Usually no typical finding


Image   Hypoechoic structural increase due to fluid accumulation


Image


Recommended protocol


Image   Standard parameters


Findings


Image   Usually no typical finding


Image   Hypodense areas in the soft tissues (hematoma) and detected joint effusion


Image  (→ Method of choice)


Recommended sequences


Image   STIR sequence


Image   T1-weighted and T2-weighted TSE sequences (possibly with fat suppression)


Findings


Image   T1-weighted SE sequence:



–   Irregularly outlined reticular or geographic heterogeneous hypointense lesion related or unrelated to the cortex and articular cartilage


Image   T2-weighted SE sequence:



–   Irregularly outlined reticular or geographic heterogeneous hyperintense lesion related or unrelated to the cortex and articular cartilage


Image   T1-weighted sequence after administration of contrast medium:



–   Strong heterogeneous enhancement


–   Administration of contrast medium only needed for DD (Caution: Exclusion of tumor)


Therapeutic Principles



Image   Temporary immobilization depending on the extent of the bone bruise and the clinical symptoms


Location of Fractures


Proximal Fracture of the Humerus



Definition


Intra-articular and extra-articular fractures of the humeral head and meta-physeal transition are referred to as proximal humerus fractures. They constitute about 4–5% of all fractures. The modified Neer classification considers viability of the humeral head, biomechanics, soft-tissue involvement, choice of therapy, and prognosis. From a functional point of view, four topographic areas are distinguished:


Image   Humeral head


Image   Major tuberosity


Image   Minor tuberosity


Image   Humeral shaft


Neer Classification (1970) (Fig. 2.1)


The classification of the fracture considers the “displacement” of the segments. A segment is called “displaced” if its translational displacement exceeds 1 cm and its axial angulation is more than 45°.


Image   Type I: No detectable displacement, the number of fragments is irrelevant for the classification


Image   Type II: Two displaced fragments are detected


Image   Type III: Three displaced fragments are detected


Image   Type IV: Detection of displaced fractures in all defined topographic areas, fracture dislocations, impression fractures of the articular surface


About 80% of all fractures are one-segment fractures and about 10% are a two-segment fractures. About 4% of fractures are three- and four-segment fractures (Fig. 2.2).


Clinical Findings


Image   Intense pain at rest and with motion


Image   Pain radiating into the upper arm


Image   Obliterated soft-tissue contour caused by hematoma and soft-tissue swelling, extending into the upper arm


Image   Plexus lesion and injury of the axillary artery (dislocations)


Goals of Imaging



Image   Visualization of the fracture lines


Image   Visualization of the displacement of the fracture fragments


Image   Exclusion of accompanying injuries



Image


Fig. 2.1 Image Four-segment classification of the proximal humerus fracture according to Neer


1   Fracture in the region of the anatomical neck


2   Avulsion of the minor tuberosity


3   Avulsion of the major tuberosity


4   Fracture in the region of the surgical neck



Image


Fig. 2.2 Image AP projection


Two-segment fracture with avulsion of the major tuberosity (arrow) and fracture through the anatomical neck (black arrowhead). Neer Type II. The absent rotation of the humeral head precludes classification as type III.



Image


Fig. 2.3 a–c Image Proximal humerus fracture, CT


a  Axial section at the level of the glenohumeral joint. Detection of multiple, partially displaced fragments. Easy identification and assignment of the osseous fragments on a single section.


b  The fracture type, however, can only be determined after 3-D reconstruction (Neer Type III: non-impacted fracture of the surgical neck [asterisk], displaced major tuberosity, angulated humeral head). Oblique posterior view.


c  Oblique coronal 2-D reconstruction with documentation of the displaced major tuberosity.










T


Major tuberosity


Therapeutic Principles



Conservative


About 80% of the fractures of the proximal humerus are one-segment fractures and are amenable to conservative therapy:


Image   Impacted abduction fractures: Immobilization in the Desault sling until pain relief (about 10 days); subsequent mobility training (swinging movements of both arms)


Image   Unstable fracture: Immobilization in the Desault sling until pain relief; subsequent application of a hanging cast to extend the fracture (about six weeks)


Surgical


Image   Two-segment fracture: Closed reduction. Exceptions: displaced avulsion of the major tuberosity and displaced humeral shaft fractures → if unstable after closed reduction, percutaneous fixation with threaded K-wires


Image   Three-segment fracture: Open reduction with internal fixation, in elderly patients possible prothesis


Image   Four-segment fracture: Usually requires prosthetic replacement


Diagnostic Evaluation


Image  (→ Method of choice)


Recommended views


Image   Standard projections


Image   Conventional tomography (DD: osteoid osteoma, osteomyelitis, and detection, as well as delineation of free fragments)


Findings


Image   Fracture line with cortical discontinuity (fracture classification)


Image   Irreducible fractures


Image   Instability


Image   Fat-blood level within the joint capsule with an intra-articular fracture (lipohemarthrosis)


Image


Recommended planes


Image   Posterior transverse and longitudinal section


Image   Lateral longitudinal section (coronal plane)


Image   Dynamic examination


Findings


Image   Dynamic examination to evaluate dislocated fragments and upward displacement of the major tuberosity (alternative to fluoroscopy)


Image   Accompanying injury of the rotator cuff and the long bicipital tendon


Image   Hemarthrosis


Image   Instabilities


Image  (→ Supplementary method) (Figs. 2.3, 2.4)


Recommended protocol


Image   Standard parameters


Findings


Image   Supplementary method to projectional radiography (modifying the description of the fracture)


Image   Number, position, and relationship of osseous fragments


Image   Articular involvement


Image   Rotatory abnormality (antetorsion angle) and longitudinal difference


Image   Surgical planning (2-D and 3-D reconstructions)


Image   Injuries of the labrum and joint capsule (CT arthrography)


Image   Accompanying injuries


Image   Instabilities:



–   Rotator-cuff injuries


–   Bicipital tendon injuries


–   Hematomas


–   Bursitis


–   Joint effusion


Image  (Fig. 2.5)


Recommended sequences


Image   STIR sequence


Image   T1-weighted and T2-weighted TSE sequences (possibly with fat suppression)


Findings


Image   Accompanying injuries of the rotatory cuff injury and the long bicipital tendon


Image   Hemarthrosis


Image   Instabilities


Image   Osteochondral fractures


Image   Occult fractures



Image


Fig. 2.4 a, b Image Proximal humerus fracture, CT


a  The oblique coronal 2-D reconstruction demonstrates a displaced avulsion of the major tuberosity.


b  The 3-D surface reconstruction performed subsequently facilitates planning the therapeutic approach, without adding any further information.










M


Minor tuberosity



Image


Fig. 2.5 a, b Image Proximal humerus fracture, MRI


a  T2-weighted oblique coronal section: Intact supraspinatus tendon with discrete hemorrhage at the level of the major tuberosity (asterisk). Avulsion of the major tuberosity with associated bone bruise. Hemorrhage into the subacromial/subdeltoid bursae (arrow). Definite hemorrhage in the deltoid muscle and tendon of the biceps brachii.


b  The corresponding axial section (fast low angle shot [FLASH] 2-D) reveals the extent of the avulsion of the major tuberosity to better advantage.
















B


Biceps brachii


D


Deltoid muscle


T


Major tuberosity


Clavicular Fracture



Goals of Imaging



Image   Visualization of the fracture displacement


Image   Evaluation of the AC joint with lateral fracture


Therapeutic Principles



Conservative


Conservative therapy in 98% of the fractures:


Image   Knapsack sling (Children: 10 days; adults: three to four weeks), early exercises of the fingers, elbow and shoulder, possibly together with physical therapy, possibly reduction in anesthesia with direct injection into the fracture cleft (axial angulation > 10°, no osseous contact)


Surgical


Image   Indications: Compound fracture. Neurovascular injuries, pseudarthrosis, pathological fracture, lateral fracture with involvement of the AC joint


Image   Internal fixation with traction plate and screws (3.5 mm DC plate with six to eight holes)


Image   Special reconstruction plates


Definition


The clavicular fracture is usually caused by three-point bending that roduces a butterfly fragment in the lateral aspect of the middle third of the clavicle.


Pathology


Image   Constitutes 10% of all fractures


Image   Indirect force due to fall on the shoulder or stretched arm


Image   Location (Fig. 2.6):



–   Middle clavicular third = 80%


–   Acromial clavicular third = 15%


–   Sternal clavicular third = 5%


Classification of the lateral clavicular fracture according to jager and Breitner (1984):


Image   Type I: Fracture lateral to the coracoclavicular ligament (stable)


Image   Type II: Fracture in the region of insertion of the coracoclavicular ligament with rupture of the coronoid or trapezoid component


Image   Type III: Fracture medial to the coracoclavicular ligament (unstable, displaced fragments)


Image   Type IV: Pseudodislocation in the pediatric age group


Clinical Findings


Image   Palpable osseous step deformity


Image   Crepitation


Image   Shortening of the shoulder girdle due to muscle pull of the pectoralis major


Image   Restricted mobility


Image   Accompanying vascular (subclavian artery and vein) and neural injury (brachial plexus)


Diagnostic Evaluation


Image  (→ Method of choice)


Recommended views


Image   Views in AP projection


Image   Projection angulated cranially by 15°


Image   Projection according to Rockwood


Findings


Image   Fracture location and classification


Image   Butterfly fragment in midclavicular fractures


Image   Posterosuperior displacement of the medial fragment (pull of the sternocleidomastoid and trapezius muscles) in fractures of the medial third


Image   Inferior, anterior, and medial displacement of the lateral fragment of fractures of the medial third


Image   Shortening and overriding of the fragments


Image   Upward displacement of the medial and/or lateral fragment of interligamentous fracture of the acromial third with involvement of the coracoclavicular ligament


Image   Absent or subtle displacement of fractures of the sternal third


Image   Rib injuries


Image


Recommended planes


Image   Posterior axial and longitudinal section


Image   Lateral coronal section


Image   Color Doppler sonography


Findings


Image   Usually no typical finding


Image   Hypoechoic and hyperechoic structural increase due to fluid accumulation and hematoma


Image   (Color) Doppler sonography to exclude vascular injuries


Image


Recommended protocol


Image   Standard parameters


Findings


Image   Fracture of the medial clavicular third (DD: instability)


Image   Detection of fragments and their location


Image   Fracture involvement of the sternoclavicular (SC) joint


Image


Recommended sequences


Image   STIR sequence


Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)


Image   MR angiography for exclusion of vascular injury


Findings


Image   Usually no typical finding


Image   Hyperintense signal changes due to soft-tissue trauma in the T2-weighted sequences


Image   Interruption and hemorrhage of the nerve plexus


Image   Typical osseous changes as seen in a fracture


Image   Detection of a vascular injury



Image


Fig. 2.6 a–c Image Clavicular fracture


The AP view demonstrates a clavicular fracture at the most frequent site.


a  Detection of an additional fracture dislocation of the coracoid process (asterisk). Associated rib fracture (arrow).


b  CT’s ability to visualize free of superimposing structures enables the unequivocal identification of the fracture and the displaced coracoid process (asterisk).


c  The postsurgical AP view shows the anatomical alignment of the clavicular fracture by means of a plate and screws. The displaced fracture of the coracoid process has been fixed by a screw (arrow).


Scapular Fracture (Figs. 2.7, 2.8)



Definition


A scapular fracture usually occurs as the result of a direct blow. Isolated scapular fractures are rare.


Pathology


Image   All types of fractures


Image   Fracture classification according to anatomical considerations:



–   Fracture of the glenoid process


–   Fracture of the body of the scapula


–   Fracture of the glenoid fossa


–   Fracture of the coracoid process


–   Fracture of the acromion


Image   Possibly damage of brachial plexus, axillary nerve, suprascapular artery, suprascapular nerve


Clinical Findings


Image   Spontaneous pain and pain on movement


Image   Hematoma formation


Image   Crepitation


Image   Restricted motion


Diagnostic Evaluation


Image


Recommended views


Image   AP views


Image   Transscapular view


Image   AP view according to Alexander


Findings


Image   Localization and classification of fractures


Image   Fracture assessment only limited


Image


Recommended planes


Image   Posterior transverse and longitudinal section


Image   Lateral coronal section


Image   Color Doppler sonography


Findings


Image   Usually no typical finding


Image   Hypoechoic and hyperechoic structural increase due to fluid accumulation and hematoma


Image   (Color) Doppler sonography to exclude vascular injuries


Image  (→ Method of choice)


Recommended protocol


Image   Standard parameters


Findings


Image   Fracture detection, localization, and classification


Image   Fracture in the region of the glenoid fossa


Image   2-D and 3-D reconstruction for surgical planning


Image


Recommended sequences


Image   STIR sequence


Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)


Image   MR angiography for exclusion of vascular injury


Findings


Image   Usually no typical finding


Image   Hyperintense signal changes due to soft-tissue trauma in the T2-weighted sequences


Image   Typical osseous changes as seen in a fracture


Image   Interruption and hemorrhage of the nerve plexus


Image   Detection of a vascular injury


Goals of Imaging



Image   Differentiating the fractures of the scapular body


Image   Fractures of the coracoid and glenoid processes and intra-articular fracture of glenoid fossa



Image


Fig. 2.7 a–f Image Classification of scapular fractures according to ldeberg



Image


Fig. 2.8 a–d Image Scapular fracture type V according to Ideberg


a  The Y-view shows a comminuted fracture of the body of the scapula with multiple displaced fragments (arrows).


b  Articular involvement can only be suspected on the available conventional radiograph. The axial CT section clearly delineates the comminution of the glenoid fossa (asterisk).


c, d The 3-D reconstructions show the extent of the comminution of the body of the scapula (asterisk) (c) and the articular involvement with corresponding dislocation (d, arrow).



Diagnostic Guidelines for Fractures


1  CR (method of choice for workup of trauma)


Recommended standard projections:


Image   AP view


Image   Tangential view of the glenoid fossa


Image   Axial or axillary view


Image   Transscapular (Y-)view


Image   Transthoracic view


Additional special projections:


Image   Stryker view


Image   Oblique apical view


Image   Supraspinatus outlet view


Image   Stress views


2  US (supplementary investigation)


Indications:


Image   Exclusion of an injury of the supraspinatus and infraspinatus tendon


Image   Exclusion of an injury of the long bicipital tendon in the intertubercular groove


Image   Muscular injury


Image   Dynamic evaluation for fragment displacement


Image   Exclusion of instability


Image   Exclusion of a Hill-Sachs lesion


Image   Presurgical determination of the antetorsion angle after healing of a malaligned humeral head fracture


Image   Doppler interrogation to exclude vascular injuries


3a  CT (supplementary investigation)


Indications:


Image   Surgical planning of complex fractures of the proximal humeral head and glenoid fossa (2-D and 3-D reconstructions)


Image   Exclusion of a fracture of the glenoid fossa (Bankart lesion)


Image   Presurgical determination of the antetorsion ankle after healing of a malaligned humeral head fracture


Image   Fracture and dislocation of the SC joint


3b  CT arthrography (supplementary investigation)


Indications:


Image   Exclusion of a rotator-cuff tear


Image   Evaluation for traumatic instability


Image   Diagnosis of a SLAP lesion


Image   Detection of an osteochondral fracture


Image   MRI has largely superseded the indications of CT arthrography.


4a  Conventional MRI (supplementary investigation)


Indications:


Image   Exclusion of a rotator-cuff tear


Image   Evaluation for traumatic instability


Image   Diagnosis of a SLAP lesion


Image   Exclusion of a bone bruise


Image   Detection of an osteochondral fracture


Image   Continuity break and hemorrhage into the nerve plexus


Image   Detection of a vascular injury


4b  Indirect and direct MR arthrography (supplementary investigation)


Indications:


Image   Improved diagnosis of a labral injury


Image   Improved diagnosis of a rotator-cuff tear


Image   Improved diagnosis of an osteochondral fracture


Therapeutic Principles


Jan 17, 2016 | Posted by in MUSCULOSKELETAL IMAGING | Comments Off on Traumatology

Full access? Get Clinical Tree

Get Clinical Tree app for offline access