Traumatology

J. Mäurer, J. Rudolph, and J. Jerosch

2    Traumatology

Fractures

Definition

A fracture represents a complete or incomplete interruption of the continuity of bone with or without dislocation following direct or indirect force.

Pathology

Types of fractures

Image   Soft-tissue damage:

–   Closed fracture

–   Compound fracture

Image   Position of the fracture fragments:

–   Displaced fracture

–   Undisplaced fracture

Description of fractures

Image   Complete fractures:

–   Chisel fracture

–   Transverse fracture

–   Oblique fracture

–   Bow fracture

–   Torsion or spiral fracture

–   Segmental fracture

–   Comminuted fracture

–   Crash fracture (more than six fragments)

Image   Incomplete fractures:

–   Infraction

–   Fissure

Clinical Findings

Image   Deformity

Image   Abnormal mobility

Image   Crepitation

Image   Loss of function

Image   Local pain

Image   Local swelling

Diagnostic Evaluation

Image

Image   Location and extent of the fracture

Image   Description of the fracture:

–   Complete (simple fracture, crash fracture)

–   Incomplete (fissure, infraction)

Image   Location of the fracture line (articular involvement)

Image   Position of the fracture fragments:

–   Lateral displacement

–   Axial displacement

–   Peripheral displacement

Image   Determination of the fracture type (AO classification)

Image  Caution: Operator dependent

Image   Associated injuries:

–   Instability

–   Rotator-cuff injuries

–   Bicipital tendon injuries

–   Hematomas

–   Bursitis

–   Joint effusion

Image   Functional assessment

Image   Hill-Sachs lesion

Image   Avulsion of the greater tuberosity

Image   Fracture of the humeral head

Image   Separation of the acromioclavicular (AC) joint

Image

Image   Addition to projectional radiography (modifying the description of the fracture)

Image   Number, position, and relationship of the fracture fragments

Image   Articular involvement

Image   Rotatory displacement (antetorsion angle) and length discrepancy

Image   Surgical planning (2-D and 3-D reconstructions)

Image   Injuries of the labrum and joint capsule (computed tomography [CT]) arthrography)

Image   Associated injuries:

–   Instabilities

–   Rotator-cuff injuries

–   Bicipital tendon injuries

–   Hematomas

–   Bursitis

–   Joint effusion

Image

Image   Fatigue fracture (stress fracture)

Image   Occult fracture (bone bruise)

Image   Chondral fracture

Image   Associated injuries:

–   Instabilities

–   Rotator-cuff injuries

–   Bicipital tendon injuries

–   Hematomas

–   Bursitis

–   Joint effusion

Image   Functional assessment

Causes of Fractures

Traumatic Fractures

Definition

Traumatic fracture refers to a complete or incomplete break in the continuity of the bone caused by a direct or indirect sudden excessive strain on the physiological elasticity of the healthy bone.

Pathology

Image   Macroscopic:

–   Bone-marrow hematoma

–   Continuity break

–   Associated soft-tissue injuries

Image   Microscopic:

–   Hemorrhage and edema

–   Trabecular compression zones with continuity break

Clinical Findings

Image   Functional impairment

Image   Deformity

Image   Crepitation

Image   Local pain

Image   Local swelling

Goals of Imaging

Image   Delineation of the fracture fragments

Image   Relationship of the fracture fragments

Image   Possibility of a fracture classification

Image   Visualization of possible associated injuries

Therapeutic Principles

Image   Depending on the fracture type, conservative or surgical therapy

Diagnostic Evaluation

Image  (→ Method of choice)

Recommended views

Image   Standard projections:

–   Anteroposterior (AP) view in relation to the scapula

–   Tangential view of the glenoid fossa

–   Axial view

–   Transscapular view (“Y projection”)

–   Transthoracic view

Image   Special projections (depending on the location of the fracture):

–   AP view in abduction or elevation and external rotation (“Stryker’s notch view”)

–   Oblique apical view

–   Supraspinal outlet view

Image   Conventional tomography (position of the fragments and course of the fracture lines in complex fractures)

Findings

Image   Fracture lines in the region of the humeral head and neck, clavicle and scapula

Image   Hill-Sachs lesion

Image   Humeral head compression

Image   Bankart lesion

Image   Instability

Image   Fat-fluid level

Image  (→ Supplementary method)

Recommended planes

Image   Posterior transverse and longitudinal section

Image   Lateral longitudinal section (coronal view)

Image   Anterior and anteromedial transverse view

Image   Longitudinal section through the AC joint

Findings

Image   Sharply demarcated or shallow concave “indentation” of the humeral head (Hill-Sachs lesion and humeral head fracture)

Image  (→ Supplementary method)

Recommended protocol

Image   Standard CT:

–   Section thickness: 2–3 mm

–   Table feed: 2–3 mm

Image   Spiral CT:

–   Section thickness: 1–3 mm

–   Table feed: 2–5 mm

–   Increment: 1–3 mm

Findings

Image   Position and number of fragments

Image   Involvement of the articular surface (e.g., Bankart lesion)

Image  (→ Supplementary method)

Recommended sequences

Image   Short time inversion recovery (STIR) sequence

Image   T1- and T2-weighted tubo spin-echo (TSE) sequences (possibly with fat suppression)

Image   Administration of contrast medium only to delineate the fracture cleft

Findings

Image   T1-weighted spin-echo (SE) sequence:

–   Hypointense visualization of the fracture cleft

–   Diffuse hypointense visualization of the associated bone-marrow hematoma/edema

Image   T2-weighted SE sequence:

–   Hyperintense visualization of the fracture line

–   Diffuse hyperintense visualization of the associated bone-marrow hematoma/edema

Image   T1-weighted sequence after administration of contrast medium:

–   Strong diffuse contrast enhancement in the region of the associated bone-marrow hematoma/edema with hypointense demarcation of the fracture line

Pathological Fracture

Goals of Imaging

Image   Extension of the pathological process: intra-articular and/or extra-articular

Image   Local stability

Image   Additional soft-tissue involvement

Definition

Complete or incomplete break in the continuity of a locally or diffusely (insufficiency fracture) altered bone without adequate trauma (spontaneous fracture) or following an inadequate trauma.

Pathology

Image   Macroscopic:

–   Bone-marrow hematoma

–   Break in continuity with smoothly demarcated fracture ends, diastatic fracture line

–   Associated soft-tissue injuries

–   Destruction of the bone by the underlying disease process (osteoporosis, metastases, osteomyelitis, primary tumor, Paget disease)

Image   Microscopic:

–   Hemorrhage and edema

–   Trabecular compression zones with discontinuity

–   Absent callus formation

–   Specific histological documentation

Clinical Findings

Image   Functional impairment

Image   Deformity

Image   Crepitation

Image   Local pain

Image   Local swelling (possibly caused by the underlying pathology)

Diagnostic Evaluation

Image  (→ Initial method of choice)

Recommended views

Image   Standard views

Image   Special views (depending on the fracture location)

Image   Conventional tomography (position of the fragments and course of the fracture lines in complex fractures)

Findings

Image   Smoothly outlined fracture lines in the region of the humeral head and neck, clavicle and scapula, frequently dehiscent fracture cleft, absent callus formation

Image   Detectable soft-tissue density

Image

Recommended planes

Image   Posterior transverse and longitudinal sections

Image   Lateral longitudinal (coronal) section

Image   Anterior and anteromedial transverse section

Image   Longitudinal section through the AC joint

Findings

Image   Abrupt or shallow concave “indentation” at the fracture site

Image   Anechoic, hypoechoic, and hyperechoic soft-tissue formation (tumor mass and accompanying reaction)

Image  (→ Supplementary method)

Recommended protocol

Image   Standard parameters

Findings

Image   Location and number of fragments

Image   Detection of osseous destruction

Image   Detection of a soft-tissue mass

Image  (→ Method of choice for DD)

Recommended sequences

Image   STIR sequence

Image   T1- and T2-weighted sequences (possibly with fat suppression)

Image   Administration of contrast medium to delineate the fracture line and to visualize the intramedullary and extramedullar/ tumor component)

Findings

Image   T1-weighted SE sequence:

–   Hypointense visualization of the fracture line

–   Diffuse hypointense visualization of the associated bone-marrow hematoma and edema

–   Hypointense and/or hyperintense visualization of the intramedullary and extramedullary soft-tissue component of the tumor

Image   T2-weighted SE sequence:

–   Hyperintense visualization of the fracture line and the peritumoral edema

–   Diffuse hyperintense visualization of the associated bone-marrow hematoma and edema

–   Hypointense and/or hyperintense visualization of the intramedullary and extramedullary soft-tissue component of the tumor

Image   T1-weighted sequence after administration of contrast medium:

–   Strong diffuse enhancement in the region of the associated bone-marrow hematoma/edema with hypo-intense demarcation of the fracture line

–   Contrast enhancement in the region of the soft-tissue component of the tumor

Therapeutic Principles

Depending on the pathology, joint preservation or joint replacement therapy:

Image   Joint preservation: Internal fixation

Image   Joint replacement: Proximal humerus prosthesis, humerus prothesis, allograft reconstruction, composite allograft reconstruction, clavicle as humerus

Fatigue Fracture (Stress Fracture)

Definition

A fatigue fracture is a complete or incomplete break in the continuity of the healthy bone due to chronic strain (stress).

Pathology

Image   Macroscopic:

–   Endosteal or periosteal new bone formation

Image   Microscopic:

–   Adaptation through microfractures

–   Imbalance between osteoclastic and osteoblastic activity

–   Formation of osteoclastic zones of resorption with lamellate new bone formation

Clinical Findings

Image   Frequently clinically silent

Image   Localized pain

Image   Soft-tissue swelling

Image   Example: Fracture of the base of the coracoid process (“trap shooter’s fracture”)

Diagnostic Evaluation

Image

Image   Sensitivity between 20% and 50%

Recommended views

Image   Views in AP and lateral projection

Image   Special projections (depending on the location of the fracture)

Image   Conventional tomography (DD: osteoid osteoma, osteomyelitis)

Findings

Image   Lamellate periosteal reaction (early stage)

Image   Decreased density and indistinctness of the cortex (early stage)

Image   Reactive lamellate osteosclerotic osseous apposition with ossifying periostitis (late stage)

Image   Endosteal thickening (late stage)

Image   Indistinctly outlined sclerotic thickening within the spongiosa and cortex with central, especially dens striated sclerotic zone (correspond to the fracture line, late stage)

Image

Image   Usually no typical finding

Image   Anechoic, hypoechoic, and hyperechoic soft-tissue formation (accompanying reaction)

Image  (→ Method of choice)

Recommended protocol

Image   Standard parameters

Findings

Image   Detection of a fracture line with reactive sclerotic osseous changes

Image  (→ Method of choice for DD)

Recommended sequences

Image   STIR sequence

Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)

Image   Administration of contrast medium for the detection of the fracture line and for the DD (exclusion of tumor)

Findings

Image   T1-weighted SE sequence:

–   Hypointense visualization of the fracture line (not always discernible)

–   Hypointense areas of the associated bone-marrow edema

–   Hypointense display of the sclerotic zones in the region of the spongiosa and cortex

Image   T2-weighted SE sequence:

–   Hyperintense visualization of the fracture line (not always discernible)

–   Hyperintense areas of the associated bone-marrow edema

–   Hypointense display of the sclerotic zones in the region of the spongiosa and cortex

Image   T1-weighted sequence after administration of contrast medium:

–   Definite diffuse enhancement of the accompanying bone-marrow edema

–   Improved visualization of the fracture line (DD: osteomyelitis, osteoid osteoma)

–   No enhancement of the sclerotic zone

Goals of Imaging

Image   Visualization of structural changes

Image   Evaluation of stability

Therapeutic Principles

Image   Without displacement Immobilization

Image   With displacement Open reduction and osteosynthesis

Chondral and Osteochondral Fractures

Goals of Imaging

Image   Visualization of the defect and fragment

Image   Localization of the defect

Image   Determination of the size of defect and fragment

Therapeutic Principles

Image   Undisplaced fragments: Temporary immobilization

Image   Dislodged fragments: Open reduction and stabilization

Definition

Osteochondral fractures are caused by pressure on the cartilage due to shear and rotatory forces, which traumatize cartilage (chondral fracture) and sub-chondral bone (osteochondral fracture). Free, loose osteochondral fragments are occasionally found.

Pathology

Image   Compression with impaction and/or spongiosa (trabecular) fracture with intact overlying cartilage

Image   Isolated trauma to the articular cartilage

Clinical Findings

Image   Nonspecific (depending on the primary trauma)

Image   Hemarthrosis

Image   Weight-bearing pain

Image   Intermittent pain and articular locking

Diagnostic Evaluation

Image  (→ Initial method)

Recommended views

Image   Standard projections

Image   Special projections (depending on fracture location)

Image   Conventional tomography (DD: osteoid osteoma, osteomyelitis, and detection as well as visualization of the loose fragments)

Findings

Image   Irregular cortex

Image   Subchondral bone density

Image   Complete or partial dislodgement of the fragment

Image   Loose fragment

Image

Image   Usually no typical finding

Image   Anechoic, hypoechoic, and hyperechoic soft-tissue formation (accompanying reaction)

Image  (→ Supplementary method)

Image   Precise detection and localization of an osseous fragment

Image   DD of a subchondral sclerosis

Image  (→ Method of choice)

Recommended sequences

Image   STIR sequence

Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)

Image   Gradient-echo (GE) sequence for evaluation of the cartilage

Image   Administration of contrast medium to delineate the fracture line

Findings

Image   T1-weighted SE sequence:

–   Partially diffuse, partially reticular subchondral hypointense signal changes (“bone bruise,” accompanying edema)

–   Hypointense display of the fracture line

Image   T2-weighted SE sequence:

–   Partially diffuse, partially reticular subchondral hyperintense signal changes (“bone bruise,” accompanying edema)

–   Hyperintense display of the fracture line

Image   GE sequence:

–   Hypointense signal change amidst the hyperintense articular cartilage as manifestation of trauma

Image   T1-weighted sequence after administration of contrast medium:

–   Administration of contrast medium to delineate the fracture line

Occult Fracture (Bone Bruise)

Goals of Imaging

Image   Extent of the bone bruise

Image   Detection of cartilage lesion

Image   Exclusion of accompanying injuries

Definition

Bone bruise refers to a subchondral osseous contusion following trauma, which is only detectable by MRI. The classification of the bone bruise is not unanimous. Mink and Deutsch (1989) consider the bone bruise to be an occult fracture together with stress fractures, femoral and tibial fractures, as well as osteochondral fractures. Following trauma, the term “occult” refers to normal conventional radiographic findings in the presence of abnormal MRI findings.

Lynch and colleagues (1989) distinguish between two types of bone bruises:

Image   Type 1 is a bone-marrow contusion without cortical involvement

Image   Type 2 is a bone-marrow contusion with cortical discontinuity

Vellet and co-workers (1991) classify the bone bruise by the contusion pattern and location:

Image   The term “reticular bone bruise” is attributed to reticular MRI changes unrelated to the subchondral region

Image   The term “geographic bone bruise” describes focal discrete signal changes related to subchondral bone

Pathology

Image   Macroscopic:

–   Bone-marrow hematoma

Image   Microscopic:

–   Hemorrhage and edema

–   No trabecular compression

–   No detectable fracture line

Clinical Findings

Image   Local pain

Image   Local soft-tissue swelling

Image   Point tenderness

Image   Joint effusion

Diagnostic Evaluation

Image

Image   Usually no typical finding

Image   Local density due to regional soft-tissue swelling or joint effusion

Image

Image   Usually no typical finding

Image   Hypoechoic structural increase due to fluid accumulation

Image

Recommended protocol

Image   Standard parameters

Findings

Image   Usually no typical finding

Image   Hypodense areas in the soft tissues (hematoma) and detected joint effusion

Image  (→ Method of choice)

Recommended sequences

Image   STIR sequence

Image   T1-weighted and T2-weighted TSE sequences (possibly with fat suppression)

Findings

Image   T1-weighted SE sequence:

–   Irregularly outlined reticular or geographic heterogeneous hypointense lesion related or unrelated to the cortex and articular cartilage

Image   T2-weighted SE sequence:

–   Irregularly outlined reticular or geographic heterogeneous hyperintense lesion related or unrelated to the cortex and articular cartilage

Image   T1-weighted sequence after administration of contrast medium:

–   Strong heterogeneous enhancement

–   Administration of contrast medium only needed for DD (Caution: Exclusion of tumor)

Therapeutic Principles

Image   Temporary immobilization depending on the extent of the bone bruise and the clinical symptoms

Location of Fractures

Proximal Fracture of the Humerus

Definition

Intra-articular and extra-articular fractures of the humeral head and meta-physeal transition are referred to as proximal humerus fractures. They constitute about 4–5% of all fractures. The modified Neer classification considers viability of the humeral head, biomechanics, soft-tissue involvement, choice of therapy, and prognosis. From a functional point of view, four topographic areas are distinguished:

Image   Humeral head

Image   Major tuberosity

Image   Minor tuberosity

Image   Humeral shaft

Neer Classification (1970) (Fig. 2.1)

The classification of the fracture considers the “displacement” of the segments. A segment is called “displaced” if its translational displacement exceeds 1 cm and its axial angulation is more than 45°.

Image   Type I: No detectable displacement, the number of fragments is irrelevant for the classification

Image   Type II: Two displaced fragments are detected

Image   Type III: Three displaced fragments are detected

Image   Type IV: Detection of displaced fractures in all defined topographic areas, fracture dislocations, impression fractures of the articular surface

About 80% of all fractures are one-segment fractures and about 10% are a two-segment fractures. About 4% of fractures are three- and four-segment fractures (Fig. 2.2).

Clinical Findings

Image   Intense pain at rest and with motion

Image   Pain radiating into the upper arm

Image   Obliterated soft-tissue contour caused by hematoma and soft-tissue swelling, extending into the upper arm

Image   Plexus lesion and injury of the axillary artery (dislocations)

Goals of Imaging

Image   Visualization of the fracture lines

Image   Visualization of the displacement of the fracture fragments

Image   Exclusion of accompanying injuries

Image

Fig. 2.1 Image Four-segment classification of the proximal humerus fracture according to Neer

1   Fracture in the region of the anatomical neck

2   Avulsion of the minor tuberosity

3   Avulsion of the major tuberosity

4   Fracture in the region of the surgical neck

Image

Fig. 2.2 Image AP projection

Two-segment fracture with avulsion of the major tuberosity (arrow) and fracture through the anatomical neck (black arrowhead). Neer Type II. The absent rotation of the humeral head precludes classification as type III.

Image

Fig. 2.3 a–c Image Proximal humerus fracture, CT

a  Axial section at the level of the glenohumeral joint. Detection of multiple, partially displaced fragments. Easy identification and assignment of the osseous fragments on a single section.

b  The fracture type, however, can only be determined after 3-D reconstruction (Neer Type III: non-impacted fracture of the surgical neck [asterisk], displaced major tuberosity, angulated humeral head). Oblique posterior view.

c  Oblique coronal 2-D reconstruction with documentation of the displaced major tuberosity.

T

Major tuberosity

Therapeutic Principles

Conservative

About 80% of the fractures of the proximal humerus are one-segment fractures and are amenable to conservative therapy:

Image   Impacted abduction fractures: Immobilization in the Desault sling until pain relief (about 10 days); subsequent mobility training (swinging movements of both arms)

Image   Unstable fracture: Immobilization in the Desault sling until pain relief; subsequent application of a hanging cast to extend the fracture (about six weeks)

Surgical

Image   Two-segment fracture: Closed reduction. Exceptions: displaced avulsion of the major tuberosity and displaced humeral shaft fractures → if unstable after closed reduction, percutaneous fixation with threaded K-wires

Image   Three-segment fracture: Open reduction with internal fixation, in elderly patients possible prothesis

Image   Four-segment fracture: Usually requires prosthetic replacement

Diagnostic Evaluation

Image  (→ Method of choice)

Recommended views

Image   Standard projections

Image   Conventional tomography (DD: osteoid osteoma, osteomyelitis, and detection, as well as delineation of free fragments)

Findings

Image   Fracture line with cortical discontinuity (fracture classification)

Image   Irreducible fractures

Image   Instability

Image   Fat-blood level within the joint capsule with an intra-articular fracture (lipohemarthrosis)

Image

Recommended planes

Image   Posterior transverse and longitudinal section

Image   Lateral longitudinal section (coronal plane)

Image   Dynamic examination

Findings

Image   Dynamic examination to evaluate dislocated fragments and upward displacement of the major tuberosity (alternative to fluoroscopy)

Image   Accompanying injury of the rotator cuff and the long bicipital tendon

Image   Hemarthrosis

Image   Instabilities

Image  (→ Supplementary method) (Figs. 2.3, 2.4)

Recommended protocol

Image   Standard parameters

Findings

Image   Supplementary method to projectional radiography (modifying the description of the fracture)

Image   Number, position, and relationship of osseous fragments

Image   Articular involvement

Image   Rotatory abnormality (antetorsion angle) and longitudinal difference

Image   Surgical planning (2-D and 3-D reconstructions)

Image   Injuries of the labrum and joint capsule (CT arthrography)

Image   Accompanying injuries

Image   Instabilities:

–   Rotator-cuff injuries

–   Bicipital tendon injuries

–   Hematomas

–   Bursitis

–   Joint effusion

Image  (Fig. 2.5)

Recommended sequences

Image   STIR sequence

Image   T1-weighted and T2-weighted TSE sequences (possibly with fat suppression)

Findings

Image   Accompanying injuries of the rotatory cuff injury and the long bicipital tendon

Image   Hemarthrosis

Image   Instabilities

Image   Osteochondral fractures

Image   Occult fractures

Image

Fig. 2.4 a, b Image Proximal humerus fracture, CT

a  The oblique coronal 2-D reconstruction demonstrates a displaced avulsion of the major tuberosity.

b  The 3-D surface reconstruction performed subsequently facilitates planning the therapeutic approach, without adding any further information.

M

Minor tuberosity

Image

Fig. 2.5 a, b Image Proximal humerus fracture, MRI

a  T2-weighted oblique coronal section: Intact supraspinatus tendon with discrete hemorrhage at the level of the major tuberosity (asterisk). Avulsion of the major tuberosity with associated bone bruise. Hemorrhage into the subacromial/subdeltoid bursae (arrow). Definite hemorrhage in the deltoid muscle and tendon of the biceps brachii.

b  The corresponding axial section (fast low angle shot [FLASH] 2-D) reveals the extent of the avulsion of the major tuberosity to better advantage.

B

Biceps brachii

D

Deltoid muscle

T

Major tuberosity

Clavicular Fracture

Goals of Imaging

Image   Visualization of the fracture displacement

Image   Evaluation of the AC joint with lateral fracture

Therapeutic Principles

Conservative

Conservative therapy in 98% of the fractures:

Image   Knapsack sling (Children: 10 days; adults: three to four weeks), early exercises of the fingers, elbow and shoulder, possibly together with physical therapy, possibly reduction in anesthesia with direct injection into the fracture cleft (axial angulation > 10°, no osseous contact)

Surgical

Image   Indications: Compound fracture. Neurovascular injuries, pseudarthrosis, pathological fracture, lateral fracture with involvement of the AC joint

Image   Internal fixation with traction plate and screws (3.5 mm DC plate with six to eight holes)

Image   Special reconstruction plates

Definition

The clavicular fracture is usually caused by three-point bending that roduces a butterfly fragment in the lateral aspect of the middle third of the clavicle.

Pathology

Image   Constitutes 10% of all fractures

Image   Indirect force due to fall on the shoulder or stretched arm

Image   Location (Fig. 2.6):

–   Middle clavicular third = 80%

–   Acromial clavicular third = 15%

–   Sternal clavicular third = 5%

Classification of the lateral clavicular fracture according to jager and Breitner (1984):

Image   Type I: Fracture lateral to the coracoclavicular ligament (stable)

Image   Type II: Fracture in the region of insertion of the coracoclavicular ligament with rupture of the coronoid or trapezoid component

Image   Type III: Fracture medial to the coracoclavicular ligament (unstable, displaced fragments)

Image   Type IV: Pseudodislocation in the pediatric age group

Clinical Findings

Image   Palpable osseous step deformity

Image   Crepitation

Image   Shortening of the shoulder girdle due to muscle pull of the pectoralis major

Image   Restricted mobility

Image   Accompanying vascular (subclavian artery and vein) and neural injury (brachial plexus)

Diagnostic Evaluation

Image  (→ Method of choice)

Recommended views

Image   Views in AP projection

Image   Projection angulated cranially by 15°

Image   Projection according to Rockwood

Findings

Image   Fracture location and classification

Image   Butterfly fragment in midclavicular fractures

Image   Posterosuperior displacement of the medial fragment (pull of the sternocleidomastoid and trapezius muscles) in fractures of the medial third

Image   Inferior, anterior, and medial displacement of the lateral fragment of fractures of the medial third

Image   Shortening and overriding of the fragments

Image   Upward displacement of the medial and/or lateral fragment of interligamentous fracture of the acromial third with involvement of the coracoclavicular ligament

Image   Absent or subtle displacement of fractures of the sternal third

Image   Rib injuries

Image

Recommended planes

Image   Posterior axial and longitudinal section

Image   Lateral coronal section

Image   Color Doppler sonography

Findings

Image   Usually no typical finding

Image   Hypoechoic and hyperechoic structural increase due to fluid accumulation and hematoma

Image   (Color) Doppler sonography to exclude vascular injuries

Image

Recommended protocol

Image   Standard parameters

Findings

Image   Fracture of the medial clavicular third (DD: instability)

Image   Detection of fragments and their location

Image   Fracture involvement of the sternoclavicular (SC) joint

Image

Recommended sequences

Image   STIR sequence

Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)

Image   MR angiography for exclusion of vascular injury

Findings

Image   Usually no typical finding

Image   Hyperintense signal changes due to soft-tissue trauma in the T2-weighted sequences

Image   Interruption and hemorrhage of the nerve plexus

Image   Typical osseous changes as seen in a fracture

Image   Detection of a vascular injury

Image

Fig. 2.6 a–c Image Clavicular fracture

The AP view demonstrates a clavicular fracture at the most frequent site.

a  Detection of an additional fracture dislocation of the coracoid process (asterisk). Associated rib fracture (arrow).

b  CT’s ability to visualize free of superimposing structures enables the unequivocal identification of the fracture and the displaced coracoid process (asterisk).

c  The postsurgical AP view shows the anatomical alignment of the clavicular fracture by means of a plate and screws. The displaced fracture of the coracoid process has been fixed by a screw (arrow).

Scapular Fracture (Figs. 2.7, 2.8)

Definition

A scapular fracture usually occurs as the result of a direct blow. Isolated scapular fractures are rare.

Pathology

Image   All types of fractures

Image   Fracture classification according to anatomical considerations:

–   Fracture of the glenoid process

–   Fracture of the body of the scapula

–   Fracture of the glenoid fossa

–   Fracture of the coracoid process

–   Fracture of the acromion

Image   Possibly damage of brachial plexus, axillary nerve, suprascapular artery, suprascapular nerve

Clinical Findings

Image   Spontaneous pain and pain on movement

Image   Hematoma formation

Image   Crepitation

Image   Restricted motion

Diagnostic Evaluation

Image

Recommended views

Image   AP views

Image   Transscapular view

Image   AP view according to Alexander

Findings

Image   Localization and classification of fractures

Image   Fracture assessment only limited

Image

Recommended planes

Image   Posterior transverse and longitudinal section

Image   Lateral coronal section

Image   Color Doppler sonography

Findings

Image   Usually no typical finding

Image   Hypoechoic and hyperechoic structural increase due to fluid accumulation and hematoma

Image   (Color) Doppler sonography to exclude vascular injuries

Image  (→ Method of choice)

Recommended protocol

Image   Standard parameters

Findings

Image   Fracture detection, localization, and classification

Image   Fracture in the region of the glenoid fossa

Image   2-D and 3-D reconstruction for surgical planning

Image

Recommended sequences

Image   STIR sequence

Image   T1- and T2-weighted TSE sequences (possibly with fat suppression)

Image   MR angiography for exclusion of vascular injury

Findings

Image   Usually no typical finding

Image   Hyperintense signal changes due to soft-tissue trauma in the T2-weighted sequences

Image   Typical osseous changes as seen in a fracture

Image   Interruption and hemorrhage of the nerve plexus

Image   Detection of a vascular injury

Goals of Imaging

Image   Differentiating the fractures of the scapular body

Image   Fractures of the coracoid and glenoid processes and intra-articular fracture of glenoid fossa

Image

Fig. 2.7 a–f Image Classification of scapular fractures according to ldeberg

Image

Fig. 2.8 a–d Image Scapular fracture type V according to Ideberg

a  The Y-view shows a comminuted fracture of the body of the scapula with multiple displaced fragments (arrows).

b  Articular involvement can only be suspected on the available conventional radiograph. The axial CT section clearly delineates the comminution of the glenoid fossa (asterisk).

c, d The 3-D reconstructions show the extent of the comminution of the body of the scapula (asterisk) (c) and the articular involvement with corresponding dislocation (d, arrow).

Diagnostic Guidelines for Fractures

1  CR (method of choice for workup of trauma)

Recommended standard projections:

Image   AP view

Image   Tangential view of the glenoid fossa

Image   Axial or axillary view

Image   Transscapular (Y-)view

Image   Transthoracic view

Additional special projections:

Image   Stryker view

Image   Oblique apical view

Image   Supraspinatus outlet view

Image   Stress views

2  US (supplementary investigation)

Indications:

Image   Exclusion of an injury of the supraspinatus and infraspinatus tendon

Image   Exclusion of an injury of the long bicipital tendon in the intertubercular groove

Image   Muscular injury

Image   Dynamic evaluation for fragment displacement

Image   Exclusion of instability

Image   Exclusion of a Hill-Sachs lesion

Image   Presurgical determination of the antetorsion angle after healing of a malaligned humeral head fracture

Image   Doppler interrogation to exclude vascular injuries

3a  CT (supplementary investigation)

Indications:

Image   Surgical planning of complex fractures of the proximal humeral head and glenoid fossa (2-D and 3-D reconstructions)

Image   Exclusion of a fracture of the glenoid fossa (Bankart lesion)

Image   Presurgical determination of the antetorsion ankle after healing of a malaligned humeral head fracture

Image   Fracture and dislocation of the SC joint

3b  CT arthrography (supplementary investigation)

Indications:

Image   Exclusion of a rotator-cuff tear

Image   Evaluation for traumatic instability

Image   Diagnosis of a SLAP lesion

Image   Detection of an osteochondral fracture

Image   MRI has largely superseded the indications of CT arthrography.

4a  Conventional MRI (supplementary investigation)

Indications:

Image   Exclusion of a rotator-cuff tear

Image   Evaluation for traumatic instability

Image   Diagnosis of a SLAP lesion

Image   Exclusion of a bone bruise

Image   Detection of an osteochondral fracture

Image   Continuity break and hemorrhage into the nerve plexus

Image   Detection of a vascular injury

4b  Indirect and direct MR arthrography (supplementary investigation)

Indications:

Image   Improved diagnosis of a labral injury

Image   Improved diagnosis of a rotator-cuff tear

Image   Improved diagnosis of an osteochondral fracture

Therapeutic Principles

Jan 17, 2016 | Posted by in MUSCULOSKELETAL IMAGING | Comments Off on Traumatology

Full access? Get Clinical Tree

Get Clinical Tree app for offline access