Chapter 14 Spine
Methods of imaging the spine
Many of the earlier imaging methods are now only of historical interest (e.g. conventional tomography, epidurography, epidural venography):
IMAGING APPROACH TO BACK PAIN AND SCIATICA
The need for radiological investigation of the lumbosacral spine is based on the results of a thorough clinical examination. A useful and basic preliminary step, which will avoid unnecessary investigations, is to determine whether the predominant symptom is back pain or leg pain. Leg pain extending to the foot is indicative of nerve root compression and imaging needs to be directed towards the demonstration of a compressive lesion, typically disc prolapse. This is most commonly seen at the L4/5 or L5/S1 levels (90–95%), and MRI should be employed as the primary mode of imaging. If the predominant symptom is back pain with or without proximal lower limb radiation, then invasive techniques may be required, including discography and facet joint arthrography. The presence of degenerative disc and facet disease demonstrated by plain films, CT or MRI has no direct correlation with the incidence of clinical symptomatology. The annulus fibrosus of the intervertebral disc and the facet joints are richly innervated, and only direct injection can assess them as a potential pain source. However, unless there are therapeutic implications there is no indication to go to these lengths, as many patients can be managed by physiotherapy and mild analgesics.
CONVENTIONAL RADIOGRAPHY
COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING OF THE SPINE
CT and MRI have replaced myelography as the primary method for investigating suspected disc prolapse. High-quality axial imaging by CT is an accurate means of demonstrating disc herniation, but in practice many studies are less than optimal due to obesity, scoliosis and beam-hardening effects due to dense bone sclerosis. For these reasons, and because of better contrast resolution, MRI is the preferred technique and CT is only employed when MRI cannot be used. MRI alone has the capacity to show the morphology of the intervertebral disc, and can show ageing changes, typically dehydration, in the nucleus pulposus. It provides sagittal sections, which have major advantages for the demonstration of the spinal cord and cauda equina, vertebral alignment, stenosis of the spinal canal, and for showing the neural foramina. Far lateral disc herniation cannot be shown by myelography, but is readily demonstrated by CT or MRI. CT may be preferred to MRI where there is a suspected spinal injury, in the assessment of primary spinal tumours of bony origin, and in the study of spondylolysis and Paget’s disease. MRI in spinal stenosis provides all the required information showing all the relevant levels on a single image, the degree of narrowing at each level and the secondary effects such as the distension of the vertebral venous plexus. The relative contributions of bone, osteophyte, ligament or disc, while better evaluated by CT, are relatively unimportant in the management decisions. Furthermore, MRI will show conditions which may mimic spinal stenosis such as prolapsed thoracic disc, ependymoma of the conus medullaris and dural arteriovenous fistula.
In addition to the diagnosis of prolapsed intervertebral disc, CT and MRI differentiate the contained disc, where the herniated portion remains in continuity with the main body of the disc, from the sequestrated disc where there is a free migratory disc fragment. This distinction may be crucial in the choice of conservative or surgical therapy, and of percutaneous rather than open surgical techniques. MRI studies have shown that even massive extruded disc lesions can resolve naturally with time, without intervention. Despite the presence of nerve root compression, a disc prolapse can be entirely asymptomatic. Gadolinium enhancement of compressed lumbar nerve roots is seen in symptomatic disc prolapse with a specificity of 95.9%.1
The main remaining uses of myelography are in patients with claustrophobia or otherwise not suitable for MRI. There are advocates for the use of CT myelography in the investigation of MRI negative cervical radiculopathy. Myelography also allows a dynamic assessment of the spinal canal in instances of spinal stenosis and instability. The use of a special MR compatible spinal harness that provides axial loading, and the availability of open and upright MR scanners also provide non-invasive dynamic MR imaging capability.
Conclusions
MRI has revolutionized the imaging of spinal disease. Advantages include non-invasiveness, multiple imaging planes and lack of radiation exposure. Its superior soft tissue contrast enables the distinction of nucleus pulposus from annulus fibrosus of the healthy disc and enables the early diagnosis of degenerative changes. However, up to 35% of asymptomatic individuals less than 40 years of age have significant intervertebral disc disease at one or more levels on MRI images. Correlation with the clinical evidence is, therefore, essential before any relevance is attached to their presence and surgery is undertaken. As MRI is, at present, not as accurate as discography in the diagnosis and delineation of annular disease, and in diagnosing the pain source, there has been a resurgence of interest in discography. MRI should be used as a predictor of the causative levels contributing to the back pain with discography having a significant role in the investigation of discogenic pain prior to surgical fusion.2
Boden S., Davis D.O., Dina T.S., et al. Abnormal magnetic resonance scans of the lumbar spine in asymptomatic subjects. J. Bone Joint Surg. Am.. 1990;72(3):403-408.
Butt W.P. Radiology for back pain. Clin. Radiol.. 1989;40(1):6-10.
Cribb G.L., Jaffray D.C., Cassar-Pullicino V.N. Observations on the natural history of massive lumbar disc herniation. J. Bone Joint Surg. Br.. 2007;89(6):782-784.
Du Boulay G.H., Hawkes S., Lee C.C., et al. Comparing the cost of spinal MR with conventional myelography and radiculography. Neuroradiology. 1990;32(2):124-136.
Horton W.C., Daftari T.K. Which disc as visualized by magnetic resonance imaging is actually a source of pain? A correlation between magnetic resonance imaging and discography. Spine. 1992;17(6Suppl):S164-S171.
Hueftle M.G., Modic M.T., Ross J.S., et al. Lumbar spine: post-operative MR imaging with gadolinium-DTPA. Radiology. 1988;167(3):817-824.
Myelography and Radiculography
CERVICAL MYELOGRAPHY
Lateral cervical or C1/2 puncture v lumbar injection
Cervical puncture is quick, safe and reliable but is contraindicated in patients with suspected high cervical or cranio-cervical pathology, and where the normal bony anatomy and landmarks are distorted or lost by anomalous development or rheumatoid disease. Complications are rare but include vertebral artery damage and inadvertent cord puncture. Cervical puncture is particularly indicated where there is severe lumbar disease, which may restrict the flow of contrast medium and may make lumbar puncture difficult, and when there is thoracic spinal canal stenosis. It is also required for the demonstration of the upper end of a spinal block. It is not a good technique for whole-spine myelography; after completion of a cervical myelogram, the contrast medium is too dilute for effective use in the remainder of the spinal canal. When lumbar injection is used, a good lumbar study is possible without dilution, following which a cervical and thoracic study is entirely feasible. Lumbar injection for cervical myelography is as effective as cervical injection when nothing restricts the upward flow of contrast medium. The post-procedural morbidity, mainly consisting of headache, is rather less after cervical puncture.