(1)
Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
5.1 Definition and examples
For a given function f such that
, the Fourier transform of f is defined, for each real number ω, by
![$$\displaystyle{ \mathcal{F}f(\omega ):=\int _{ -\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx. }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ1.gif)
![$$\int _{-\infty }^{\infty }\vert f(x)\vert \,dx <\infty$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq2.gif)
![$$\displaystyle{ \mathcal{F}f(\omega ):=\int _{ -\infty }^{\infty }f(x)\,e^{-i\omega x}\,dx. }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ1.gif)
(5.1)
The idea behind this definition is that, for each value of ω, the value of
captures the component of f that has the frequency ω∕(2π) (and period 2π∕ω ).
![$$\,\mathcal{F}f(\omega )\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq4.gif)
Example 5.1.
The Fourier transform of a Gaussian. Let
, for some positive constant A > 0. Then we have
![$$\displaystyle{ \mathcal{F}f(\omega ) = \sqrt{ \frac{\pi } {A}}\,e^{- \frac{\omega ^{2}} {4A} }. }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ2.gif)
![$$f(x) = e^{-Ax^{2} }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq5.gif)
![$$\displaystyle{ \mathcal{F}f(\omega ) = \sqrt{ \frac{\pi } {A}}\,e^{- \frac{\omega ^{2}} {4A} }. }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ2.gif)
(5.2)
To prove this, we first need the following fact.
Lemma 5.2.
For A ≠ 0, we have
.
![$$\int _{-\infty }^{\infty }e^{-Ax^{2} }\,dx = \sqrt{ \frac{\pi }{A}}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq6.gif)
Proof.
Squaring the integral, we get
Taking square roots proves the lemma.
![$$\displaystyle\begin{array}{rcl} \left (\int _{-\infty }^{\infty }e^{-Ax^{2} }\,dx\right )^{2}& =& \left (\int _{ -\infty }^{\infty }e^{-Ax^{2} }\,dx\right )\,\left (\int _{-\infty }^{\infty }e^{-Ax^{2} }\,dx\right ) {}\\ & =& \left (\int _{-\infty }^{\infty }e^{-Ax^{2} }\,dx\right )\,\left (\int _{-\infty }^{\infty }e^{-Ay^{2} }\,dy\right ) {}\\ & =& \int _{-\infty }^{\infty }\int _{ -\infty }^{\infty }e^{-A(x^{2}+y^{2}) }\,dx\,dy {}\\ \mathrm{(polar\ coordinates)}& =& \int _{\theta =0}^{2\pi }\int _{ r=0}^{\infty }e^{-Ar^{2} }\,r\,dr\,d\theta {}\\ & =& \int _{\theta =0}^{2\pi }\left (\lim _{ b\rightarrow \infty }\frac{1 - e^{-Ab^{2} }} {2A} \right )\,d\theta {}\\ & =& \int _{\theta =0}^{2\pi } \frac{1} {2A}\,d\theta {}\\ & =& \frac{\pi } {A}. {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ3.gif)
Now to compute the Fourier transform for this example. For each ω,
This establishes the result we were after. □
![$$\displaystyle\begin{array}{rcl} \mathcal{F}f(\omega )& =& \int _{-\infty }^{\infty }e^{-Ax^{2} }\,e^{-i\omega x}\,dx {}\\ & =& \int _{-\infty }^{\infty }e^{-A(x^{2}+i\omega x/A) }\,dx {}\\ (\mathrm{complete\ the\ square})& =& \int _{-\infty }^{\infty }e^{-A(x^{2}+i\omega x/A+(i\omega /2A)^{2} }\,e^{A(i\omega /2A)^{2} }\,dx {}\\ & =& e^{-\omega ^{2}/4A }\,\int _{-\infty }^{\infty }e^{-A(x+i\omega /2A)^{2} }\,dx {}\\ & =& e^{-\omega ^{2}/4A }\,\int _{-\infty }^{\infty }e^{-Au^{2} }\,du\ \ \mathrm{with}\ u = x + i\omega /2A {}\\ & =& \sqrt{ \frac{\pi } {A}}\,e^{-\omega ^{2}/4A }\ \ \mathrm{by\ the\ lemma.} {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ4.gif)
Observe that if we take
, then
and
, a constant multiple of f itself. In the language of linear algebra, this function f is an eigenvector, or eigenfunction, of the Fourier transform.
![$$A = 1/2$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq7.gif)
![$$\,f(x) = e^{-x^{2}/2 }\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq8.gif)
![$$\mathcal{F}f(\omega ) = \sqrt{2\pi }e^{-\omega ^{2}/2 }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq9.gif)
Additional examples are considered in the exercises. Let us look at some basic properties of the Fourier transform.
5.2 Properties and applications
Additivity. Because the integral of a sum of functions is equal to the sum of the integrals of the functions separately, it follows that
![$$\displaystyle{ \mathcal{F}(f + g)(\omega ) = \mathcal{F}f(\omega ) + \mathcal{F}g(\omega )\, }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ5.gif)
for all integrable functions f and g and every real number ω.
![$$\displaystyle{ \mathcal{F}(f + g)(\omega ) = \mathcal{F}f(\omega ) + \mathcal{F}g(\omega )\, }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ5.gif)
(5.3)
Constant multiples. Because the integral of c ⋅ f is equal to c times the integral of f, we see that
![$$\displaystyle{ \mathcal{F}(cf)(\omega ) = c \cdot \mathcal{F}f(\omega )\, }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ6.gif)
for all integrable functions f, all (complex) numbers c, and every real number ω.
![$$\displaystyle{ \mathcal{F}(cf)(\omega ) = c \cdot \mathcal{F}f(\omega )\, }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ6.gif)
(5.4)
Proposition 5.3.
The Fourier transform acts as a linear transformation on the space of all absolutely integrable functions. That is, for two such functions f and g and any constants α and β, we get that
![$$\displaystyle{ \mathcal{F}(\alpha f +\beta g) =\alpha \mathcal{F}(f) +\beta \mathcal{F}(g). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ7.gif)
![$$\displaystyle{ \mathcal{F}(\alpha f +\beta g) =\alpha \mathcal{F}(f) +\beta \mathcal{F}(g). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ7.gif)
(5.5)
Shifting/translation. For an integrable function f and fixed real number α, let
. (So the graph of g is the graph of f shifted or translated to the right by α units.) Then
![$$\displaystyle{ \mathcal{F}g(\omega ) = e^{-i\omega \alpha }\mathcal{F}f(\omega ). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ8.gif)
![$$g(x) = f(x-\alpha )$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq10.gif)
![$$\displaystyle{ \mathcal{F}g(\omega ) = e^{-i\omega \alpha }\mathcal{F}f(\omega ). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ8.gif)
(5.6)
Proof.
For each ω, we get
![$$\displaystyle\begin{array}{rcl} \mathcal{F}g(\omega )& =& \int _{-\infty }^{\infty }f(x-\alpha )\,e^{-i\omega x}\,dx {}\\ (\mathrm{let\ }u = x-\alpha )\ & =& \int _{-\infty }^{\infty }f(u)\,e^{-i\omega (u+\alpha )}\,du {}\\ & =& e^{-i\omega \alpha }\,\int _{ -\infty }^{\infty }f(u)\,e^{-i\omega u}\,du {}\\ & =& e^{-i\omega \alpha }\,\mathcal{F}f(\omega )\ \ \mathrm{as\ claimed.} {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ9.gif)
![$$\displaystyle\begin{array}{rcl} \mathcal{F}g(\omega )& =& \int _{-\infty }^{\infty }f(x-\alpha )\,e^{-i\omega x}\,dx {}\\ (\mathrm{let\ }u = x-\alpha )\ & =& \int _{-\infty }^{\infty }f(u)\,e^{-i\omega (u+\alpha )}\,du {}\\ & =& e^{-i\omega \alpha }\,\int _{ -\infty }^{\infty }f(u)\,e^{-i\omega u}\,du {}\\ & =& e^{-i\omega \alpha }\,\mathcal{F}f(\omega )\ \ \mathrm{as\ claimed.} {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ9.gif)
Since the graph of g is a simple translation of the graph of f, the magnitude of the component of g at any given frequency is the same as that of f. However, the components occur at different places in the two signals, so there is a phase shift or delay in the Fourier transform. Also, the fixed translation α encompasses more cycles of a wave at a higher frequency than at a lower one. (For instance, an interval of width α = 2π contains two cycles of the wave y = sin(2x), but only one cycle of the wave y = sin(x).) Therefore, the larger the value of α is relative to the wavelength 2π∕ω the larger will be the phase delay in the transform. That is, the phase delay in the transform is proportional to ω, which explains the factor of e −i ω α in the transform of the shifted function g.
Shifting/modulation. For a given function f and a fixed real number ω 0, let
. (So h “modulates” f by multiplying f by a periodic function of a fixed frequency ω 0∕2π.) Then
![$$\displaystyle{ \mathcal{F}h(\omega ) = \mathcal{F}f(\omega -\omega _{0}). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ10.gif)
![$$h(x) = e^{i\omega _{0}x}\ f(x)$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq11.gif)
![$$\displaystyle{ \mathcal{F}h(\omega ) = \mathcal{F}f(\omega -\omega _{0}). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ10.gif)
(5.7)
Proof.
For each ω, we get
![$$\displaystyle\begin{array}{rcl} \mathcal{F}h(\omega )& =& \int _{-\infty }^{\infty }e^{i\omega _{0}x}\,f(x)\,e^{-i\omega x}\,dx {}\\ & =& \int _{-\infty }^{\infty }f(x)\,e^{-i(\omega -\omega _{0})x}\,dx {}\\ & =& \mathcal{F}f(\omega -\omega _{0})\ \ (\mathrm{by\ definition!}). {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ11.gif)
![$$\displaystyle\begin{array}{rcl} \mathcal{F}h(\omega )& =& \int _{-\infty }^{\infty }e^{i\omega _{0}x}\,f(x)\,e^{-i\omega x}\,dx {}\\ & =& \int _{-\infty }^{\infty }f(x)\,e^{-i(\omega -\omega _{0})x}\,dx {}\\ & =& \mathcal{F}f(\omega -\omega _{0})\ \ (\mathrm{by\ definition!}). {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ11.gif)
These two shifting properties show that a translation of f results in a modulation of
while a modulation of f produces a translation of
.
![$$\,\mathcal{F}f\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq12.gif)
![$$\mathcal{F}f$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq13.gif)
Scaling. For a given function f and a fixed real number a ≠ 0, let ϕ(x) = f(ax). Then
![$$\displaystyle{ \mathcal{F}\phi (\omega ) = \frac{1} {\vert a\vert }\mathcal{F}f(\omega /a). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ12.gif)
![$$\displaystyle{ \mathcal{F}\phi (\omega ) = \frac{1} {\vert a\vert }\mathcal{F}f(\omega /a). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ12.gif)
(5.8)
Proof.
Assume that a > 0 for now. For each ω, we get
![$$\displaystyle\begin{array}{rcl} \mathcal{F}\phi (\omega )& =& \int _{-\infty }^{\infty }f(ax)\,e^{-i\omega x}\,dx {}\\ (\mathrm{let}\ u = ax)\ & =& \frac{1} {a}\int _{-\infty }^{\infty }f(u)\,e^{-i\omega u/a}\,du {}\\ & =& \frac{1} {a}\int _{-\infty }^{\infty }f(u)\,e^{-i(\omega /a)u}\,du {}\\ & =& \frac{1} {a}\mathcal{F}f(\omega /a)\ \ (\mathrm{by\ definition!}). {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ13.gif)
![$$\displaystyle\begin{array}{rcl} \mathcal{F}\phi (\omega )& =& \int _{-\infty }^{\infty }f(ax)\,e^{-i\omega x}\,dx {}\\ (\mathrm{let}\ u = ax)\ & =& \frac{1} {a}\int _{-\infty }^{\infty }f(u)\,e^{-i\omega u/a}\,du {}\\ & =& \frac{1} {a}\int _{-\infty }^{\infty }f(u)\,e^{-i(\omega /a)u}\,du {}\\ & =& \frac{1} {a}\mathcal{F}f(\omega /a)\ \ (\mathrm{by\ definition!}). {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ13.gif)
A similar argument applies when a < 0. (Why do we get a factor of 1∕ | a | in this case?)
Even and odd functions. A function f, defined on the real line, is even if
for every x. Similarly, a function g is odd if
for every x. For example, the cosine function is even while the sine function is odd.
![$$\,f(-x) = f(x)\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq14.gif)
![$$\,g(-x) = -g(x)\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq15.gif)
Using Euler’s formula (4.4),
, we may write the Fourier transform of a suitable real-valued function f as
![$$\displaystyle{\mathcal{F}f(\omega ) =\int _{ -\infty }^{\infty }f(x)\cos (\omega x)\,dx - i \cdot \int _{ -\infty }^{\infty }f(x)\sin (\omega x)\,dx\,.}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equa.gif)
![$$e^{\,i\theta } =\cos (\theta ) + i\sin (\theta )$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq16.gif)
![$$\displaystyle{\mathcal{F}f(\omega ) =\int _{ -\infty }^{\infty }f(x)\cos (\omega x)\,dx - i \cdot \int _{ -\infty }^{\infty }f(x)\sin (\omega x)\,dx\,.}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equa.gif)
Now, if f is even, then, for fixed ω, the function
is odd, whence
. Thus, an even function has a real-valued Fourier transform.
![$$\,x\mapsto f(x)\sin (\omega x)\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq17.gif)
![$$\int _{-\infty }^{\infty }f(x)\sin (\omega x)\,dx = 0$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq18.gif)
Similarly, if f is odd, then
is also odd for each fixed ω. Thus,
. It follows that an odd function has a purely imaginary Fourier transform.
![$$\,x\mapsto f(x)\cos (\omega x)\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq19.gif)
![$$\int _{-\infty }^{\infty }f(x)\cos (\omega x)\,dx = 0$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq20.gif)
Transform of the complex conjugate. For a complex-number-valued function f defined on the real line
, the complex conjugate of f is the function
defined by
![$$\displaystyle{ \overline{f}(x) = \overline{f(x)}\ \ \mathrm{for\ every\ real\ number}\ x. }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ14.gif)
![$$\mathbb{R}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq21.gif)
![$$\,\overline{f}\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq22.gif)
![$$\displaystyle{ \overline{f}(x) = \overline{f(x)}\ \ \mathrm{for\ every\ real\ number}\ x. }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ14.gif)
(5.9)
To uncover the relationship between the Fourier transform of
and that of f, let ω be an arbitrary real number. Then we have
This proves the following proposition.
![$$\,\overline{f}\,$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq23.gif)
![$$\displaystyle\begin{array}{rcl} \mathcal{F}\overline{f}(\omega )& =& \int _{-\infty }^{\infty }\overline{f(x)}\,e^{-i\omega x}\,dx {}\\ & =& \int _{-\infty }^{\infty }\overline{f(x)}\,e^{\,i(-\omega )x}\,dx {}\\ & =& \int _{-\infty }^{\infty }\overline{f(x)}\,\overline{e^{-i(-\omega )x}}\,dx {}\\ & =& \overline{\int _{-\infty }^{\infty }f(x)\,e^{-i(-\omega )x}\,dx} {}\\ & =& \overline{\mathcal{F}f(-\omega )} {}\\ & =& \overline{\mathcal{F}f}(-\omega ). {}\\ \end{array}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ15.gif)
Proposition 5.4.
For an integrable function f defined on the real line, and for every real number ω,
![$$\displaystyle{ \mathcal{F}\overline{f}(\omega ) = \overline{\mathcal{F}f}(-\omega ). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ16.gif)
![$$\displaystyle{ \mathcal{F}\overline{f}(\omega ) = \overline{\mathcal{F}f}(-\omega ). }$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equ16.gif)
(5.10)
Example 5.5.
Let
2 sin(ω)∕ω. Now let ϕ(x) = f(ax), where a > 0. That is,
, which is the same as
. This agrees with the scaling result (5.8).
![$$\,f(x) = \left \{\begin{array}{cc} 1&\mbox{ if $ - 1 \leq x \leq 1$,}\\ 0 & \mbox{ if $\vert x\vert> 1$.} \end{array} \right.$$
” src=”/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq24.gif”></SPAN> Then the Fourier transform of <SPAN class=EmphasisTypeItalic>f</SPAN> is <SPAN id=IEq25 class=InlineEquation><IMG alt=](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq25.gif)
![$$\,\phi (x) = \left \{\begin{array}{cc} 1&\mbox{ if $-1/a \leq x \leq 1/a$,}\\ 0 & \mbox{ if $\vert x\vert> 1/a$.} \end{array} \right.$$
” src=”/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq26.gif”></SPAN> </DIV><br />
<DIV class=Para>So we already know from earlier work that <SPAN id=IEq27 class=InlineEquation><IMG alt=](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq27.gif)
![$$(1/a)\mathcal{F}f(\omega /a)$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq28.gif)
Example 5.6.
Let
. Now let
5.6), we get
![$$\displaystyle{\mathcal{F}g(\omega ) = e^{-2i\omega }\mathcal{F}f(\omega ) = 2e^{-2i\omega }\frac{\sin (\omega )} {\omega }.}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equc.gif)
Get Clinical Tree app for offline access
![$$\,f(x) = \left \{\begin{array}{cc} 1&\mbox{ if $ - 1 \leq x \leq 1$,}\\ 0 & \mbox{ if $\vert x\vert> 1$} \end{array} \right.$$
” src=”/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq29.gif”></SPAN> as in the previous example. So, again, the Fourier transform of <SPAN class=EmphasisTypeItalic>f</SPAN> is <SPAN id=IEq30 class=InlineEquation><IMG alt=](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq30.gif)
![$$\displaystyle{\mathcal{F}g(\omega ) = e^{-2i\omega }\mathcal{F}f(\omega ) = 2e^{-2i\omega }\frac{\sin (\omega )} {\omega }.}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equc.gif)
Example 5.7.
As an application of the shifting/modulation property (5.7), observe that
Thus, for any suitable f, take h(x) = f(x)cos(ω 0 x). That is,
It follows that
![$$\displaystyle{\mathcal{F}h(\omega ) = (1/2)\mathcal{F}f(\omega -\omega _{0}) + (1/2)\mathcal{F}f(\omega +\omega _{0}).}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equf.gif)
![$$\displaystyle{\cos (\omega _{0}x) = (1/2)(e^{i\omega _{0}x} + e^{-i\omega _{0}x}).}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equd.gif)
![$$\displaystyle{h(x) = (1/2)e^{i\omega _{0}x}f(x) + (1/2)e^{i(-\omega _{0})x}f(x).}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Eque.gif)
![$$\displaystyle{\mathcal{F}h(\omega ) = (1/2)\mathcal{F}f(\omega -\omega _{0}) + (1/2)\mathcal{F}f(\omega +\omega _{0}).}$$](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_Equf.gif)
For a specific example, let
. With h(x) = f(x)cos(ω 0 x), we get
![$$\,f(x) = \left \{\begin{array}{cc} 1&\mbox{ if $ - 1 \leq x \leq 1$,}\\ 0 & \mbox{ if $\vert x\vert> 1$} \end{array} \right.\,$$
” src=”/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq31.gif”></SPAN> as in the previous examples. So, again, the Fourier transform of <SPAN class=EmphasisTypeItalic>f</SPAN> is <SPAN id=IEq32 class=InlineEquation><IMG alt=](/wp-content/uploads/2016/10/A183987_2_En_5_Chapter_IEq32.gif)
![](https://clinicalpub.com/wp-content/uploads/2023/09/banner1.png)