Neuroscience of Tinnitus




Tinnitus is a consequence of changes in auditory and nonauditory neural networks following damage to the cochlea. Homeostatic compensatory mechanisms occur after hearing loss and these mechanisms alter the balance of excitatory and inhibitory neurotransmitters. In many individuals with hearing loss, chronic tinnitus and related phenomena emerge. Some people with tinnitus are disturbed by this subjective sensation. When auditory network dysfunction is coupled with limbic-gating dysfunction, an otherwise meaningless auditory percept such as tinnitus may acquire negative emotional features. The development of effective treatment options is enhanced by the understanding of the neural networks underpinning tinnitus.




















References



  1. 1. American tinnitus association. Understanding the facts. 2011. Available at: http://ata.org/understanding-facts. Accessed January 28, 2016.

  2. 2. Chang J.E., and Zeng F.G.: Tinnitus suppression by electric stimulation of the auditory nerve. Front Syst Neurosci 2012; 6: pp. 19

  3. 3. Shargorodsky J., Curhan G.C., and Farwell W.R.: Prevalence and characteristics of tinnitus among US adults. Am J Med 2010; 123: pp. 711-718

  4. 4. Rauschecker J.P., Leaver A.M., and Muhlau M.: Tuning out the noise: limbic auditory interactions of tinnitus. Neuron 2010; 66: pp. 819-826

  5. 5. Roberts L.E., Eggermont J.J., Caspary D.M., et al: Ringing ears: the neuroscience of tinnitus. J Neurosci 2010; 30: pp. 14972-14979

  6. 6. Bauer CA. Tinnitus. In: Lalwani and Sataloff, editors. Otolaryngology: Head and Neck Surgery. New Delhi (India): Jaypee Brothers; 2014.

  7. 7. Brozoski T.J., and Bauer C.A.: Auditory neuronal networks and chronic tinnitus. In Faingold C.L., and Blumenfeld H. (eds): Neuronal networks in brain function, CNS disorders, and therapeutics. Cambridge (MA): Academic Press, 2014. pp. 261-275

  8. 8. Jastebroff P.J.: Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 1990; 8: pp. 221-254

  9. 9. Niskar A.S., Kieszak S.M., Holmes A.E., et al: Estimated prevalence of noise-induced hearing threshold shifts among children 6-19 years of age: the Third National Health and Nutrition Examination Survey, 1988-1994, United States. Pediatrics 2001; 108: pp. 40-43

  10. 10. Kujawa S.G., and Liberman M.C.: Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 2006; 26: pp. 2115-2123

  11. 11. Guo L. Veteran population projection model 2014. 2014.

  12. 12. Theodoroff S.M., Lewis M.S., Folmer R.L., et al: Hearing impairment and tinnitus: prevalence, risk factors, and outcomes in US service members and veterans deployed to the Iraq and Afghanistan wars. Epidemiol Rev 2015; 37: pp. 71-85

  13. 13. Song J.J., De Ridder D., Van de Heyning P., et al: Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies. J Nucl Med 2012; 53: pp. 1550-1557

  14. 14. Wineland A.M., Burton H., and Piccirillo J.: Functional connectivity networks in nonbothersome tinnitus. Otolaryngol Head Neck Surg 2012; 47: pp. 900-906

  15. 15. Cacace A.T., Brozoski T., Berkowitz B., et al: Manganese enhanced magnetic resonance imaging (MEMRI): a powerful new imaging method to study tinnitus. Hear Res 2014; 311: pp. 49-62

  16. 16. Hudspeth A.J.: Hearing. In Kandel E.R., Schwartz J.H., and Jessell T.M. (eds): Principles of neural science. New York: McGraw-Hill, 2000. pp. 654-711

  17. 17. Raphael Y., and Altschuler R.A.: Structure and innervation of the cochlea. Brain Res Bull 2003; 60: pp. 397-422

  18. 18. Arle J.E., and Kim D.O.: Neural modeling of intrinsic and spike discharge properties of cochlear nucleus neurons. Biol Cybern 1991; 64: pp. 273-283

  19. 19. Hackett T.A., Barkat T.R., O’Brien B.M., et al: Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci 2011; 31: pp. 2983-2995

  20. 20. de la Mothe L.A., Blumell S., Kajikawa Y., et al: Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 2006; 496: pp. 72-96

  21. 21. Sanchez J.T., Ghelani S., and Otto-Meyer S.: From development to disease: diverse functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience 2015; 285: pp. 248-259

  22. 22. Achard S., and Bullmore E.: Efficiency and cost of economical brain functional networks. PLoS Comput Biol 2007; 3: pp. e17

  23. 23. Abeles M.: Corticonics, neural circuits of the cerebral cortex. Cambridge (United Kingdom): Cambridge University Press, 1991.

  24. 24. Kaiser M., and Hilgetag C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2006; 2: pp. e95

  25. 25. Farhat N.H.: Corticonic models of brain mechanisms underlying cognition and intelligence. Phys Life Rev 2007; 4: pp. 223-252

  26. 26. Eggermont J.J., and Roberts L.E.: The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Front Syst Neurosci 2012; 6: pp. 5-8

  27. 27. Dehaene S., and Changeux J.P.: Experimental and theoretical approaches to conscious processing. Neuron 2011; 70: pp. 200-227

  28. 28. De Ridder D., Elgoyhen A.B., Romo R., et al: Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A 2011; 108: pp. 8075-8080

  29. 29. Schlee W., Hartmann T., Langguth B., et al: Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 2009; 10: pp. 10-11

  30. 30. Leaver A.M., Seydell-Greenwald A., Turesky T.K., et al: Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci 2012; 6: pp. 21

  31. 31. Vanneste S., Joos K., and De Ridder D.: Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood. PLoS One 2012; 7: pp. e31182

  32. 32. Middleton J.W., and Tzounopoulos T.: Imaging the neural correlates of tinnitus: a comparison between animal models and human studies. Front Syst Neurosci 2012; 6: pp. 1-9

  33. 33. Weisz N., Muller S., Schlee W., et al: The neural code of auditory phantom perception. J Neurosci 2007; 27: pp. 1479-1484

  34. 34. van der Loo E., Gais S., Congedo N., et al: Tinnitus intensity dependent gamma oscillations of the contra-lateral auditory cortex. PLoS One 2009; 4: pp. e7396

  35. 35. De Ridder D., van der Loo E., Vanneste S., et al: Theta-gamma dysrhythmia and auditory phantom perception. J Neurosurg 2011; 114: pp. 912-921

  36. 36. Kujawa S.G., and Liberman M.C.: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 2009; 29: pp. 14077-14085

  37. 37. Lin H.W., Furman A.C., Kujawa S.G., et al: Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 2011; 12: pp. 605-616

  38. 38. Guitton M.J.: Tinnitus: pathology of synaptic plasticity at the cellular and system levels. Front Syst Neurosci 2012; 6: pp. 215-221

  39. 39. Stolzberg D., Salvi R.J., and Allman B.L.: Salicylate toxicity model of tinnitus. Front Syst Neurosci 2012; 6: pp. 249-260

  40. 40. Bauer C.A., Brozoski T.J., and Myers K.: Primary afferent dendrite degeneration as a cause of tinnitus. J Neurosci Res 2007; 85: pp. 1489-1498

  41. 41. Norena A.J., and Farley B.J.: Tinnitus-related neural activity: theories of generation, propagation, and centralization. Hear Res 2013; 295: pp. 161-171

  42. 42. Langers D.R., de Kleine E., and van Dijk P.: Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 2012; 6: pp. 2

  43. 43. Norena A.J.: An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 2011; 35: pp. 1089-1109

  44. 44. Knipper M., Van Dijk P., Nunes I., et al: Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111: pp. 17-33

  45. 45. Kilgard M.P., and Merzenich M.M.: Cortical map reorganization enabled by nucleus basalis activity. Science 1998; 279: pp. 1714-1718

  46. 46. Hackett T.A.: Information flow in the auditory cortical network. Hear Res 2011; 271: pp. 133-146

  47. 47. Winer J.A., and Lee C.C.: The distributed auditory cortex. Hear Res 2007; 229: pp. 3-13

  48. 48. Masterton R.B.: Role of the mammalian forebrain in hearing. In Syka J. (eds): International symposium on acoustical signal processing in the central auditory system. Prague (Czech Republic): Plenum Press, 1996. pp. 1-17

  49. 49. Melcher J.R., Sigalvosky I.S., Guinan J.J., et al: Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 2000; 83: pp. 1058-1072

  50. 50. Eggermont J.J.: Central tinnitus. Auris Nasus Larynx 2003; 30: pp. S7-S12

  51. 51. Norena A.J., and Eggermont J.J.: Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 2005; 25: pp. 699-705

  52. 52. Eggermont J.J., and Roberts L.E.: The neuroscience of tinnitus. Trends Neurosci 2004; 27: pp. 676-682

  53. 53. Guitton M.J.: Tinnitus and anxiety: more than meets the ears. Curr Psychiatry Rev 2006; 2: pp. 333-338

  54. 54. Cacace A.T., Tasciyan T., and Cousins J.P.: Principles of functional magnetic resonance imaging: application to auditory neuroscience. J Am Acad Audiol 2000; 11: pp. 239-272

  55. 55. Brozoski T., Odintsov B., and Bauer C.: Gamma-aminobutyric acid and glutamic acid levels in the auditory pathway of rats with chronic tinnitus: a direct determination using high resolution point-resolved proton magnetic resonance spectroscopy (H-MRS). Front Syst Neurosci 2012; 6: pp. 9

  56. 56. Muhlau M., Rauschecker J.P., Oestreicher E., et al: Structural brain changes in tinnitus. Cereb Cortex 2006; 16: pp. 1283-1288

  57. 57. Blood A.J., Zatorre R.J., Bermudez P., et al: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 1999; 2: pp. 382-387

  58. 58. Hyde K.L., Zatorre R.J., Evans A.C., et al: Structural brain differences in unilateral tinnitus. San Francisco (CA): Organization Human Brain Mapping, 2009.

  59. 59. Landgrebe M., Langguth B., Rosengarth K., et al: Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 2009; 46: pp. 213-218

  60. 60. Zald D.H., and Pardo J.V.: The neural correlates of aversive auditory stimulation. Neuroimage 2002; 16: pp. 746-753

  61. 61. Ploghaus A., Becerra L., Borras C., et al: Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cogn Sci 2003; 7: pp. 197-200

  62. 62. Drevets W.C., Price J.L., Simpson J.R., et al: Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: pp. 824-827

  63. 63. Mayberg H.S., Lozano A.M., Voon V., et al: Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: pp. 651-660

  64. 64. McCullough L.D., Sokolowski J.D., and Salamone J.D.: A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 1993; 52: pp. 919-925

  65. 65. O’Doherty J., Dayan P., Schultz J., et al: Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 2004; 304: pp. 452-454

  66. 66. Schultz W.: Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioral ecology. Curr Opin Neurobiol 2004; 14: pp. 139-147

  67. 67. Brown P., and Molliver M.E.: Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci 2000; 20: pp. 1952-1963

  68. 68. O’Donnell P., Lavin A., Enquist L.W., et al: Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 1997; 17: pp. 2143-2167

  69. 69. Koob G.F.: Neurobiology of addiction. Toward the development of new therapies. Ann N Y Acad Sci 2000; 909: pp. 170-185

  70. 70. Bauer C., Wisner K., Sybert L.T., et al: The cerebellum as a novel tinnitus generator. Hear Res 2013; 295: pp. 130-139

  71. 71. Inoue T., Majid T., and Pautler R.G.: Manganese enhanced MRI (MEMRI): neurophysiological applications. Rev Neurosci 2011; 22: pp. 675-694

  72. 72. Striessnig J., Bolz H.R., and Koschak A.: Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch 2010; 460: pp. 361-374

  73. 73. Campbell L.W., Hao S.Y., Thibault O., et al: Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci 1996; 16: pp. 6286-6295

  74. 74. Koretsky A.P., and Silva A.C.: Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 2004; 17: pp. 527-531

  75. 75. Lee J.H., Silva A.C., Merkle H., et al: Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn Reson Med 2005; 53: pp. 640-648

  76. 76. Brozoski T.J., Wisner K.W., Odintsov B., et al: Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model. PLoS One 2013; 8: pp. e77674

  77. 77. Brozoski T.J., Ciobanu L., and Bauer C.A.: Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res 2007; 228: pp. 168-179

  78. 78. Mulders W.H., and Robertson D.: Progressive centralization of midbrain hyperactivity after acoustic trauma. Neuroscience 2011; 192: pp. 753-760

  79. 79. Hickox A.E., and Liberman M.C.: Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 2014; 111: pp. 552-564

  80. 80. Yang S., Weiner B.D., Zhang L.S., et al: Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci U S A 2011; 108: pp. 14974-14979

  81. 81. Mugnaini E., and Floris A.: The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 1994; 339: pp. 174-180

  82. 82. Johnson R.M., Brummet R., and Schleuning A.: Use of alprazolam for relief of tinnitus. A double-blind study. Arch Otolaryngol Head Neck Surg 1993; 119: pp. 842-845

  83. 83. Jalali M.M., Kousha A., Nahavi S.E., et al: The effects of alprazolam on tinnitus: a cross-over randomized clinical trial. Med Sci Monit 2009; 15: pp. PI55-PI60

  84. 84. Bauer C.A., and Brozoski T.J.: Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope 2006; 116: pp. 675-681

  85. 85. Vanneste S., and De Ridder D.: The use of alcohol as a moderator for tinnitus-related distress. Brain Topogr 2012; 25: pp. 97-105

  86. 86. Azevedo A.A., and Figueiredo R.R.: Tinnitus treatment with acamprosate: double-blind study. Braz J Otorhinolaryngol 2005; 71: pp. 618-623

  87. 87. Espinosa-Sanchez J.M., Heitzmann-Hernandez T., and Lopez-Escamez J.A.: Pharmacotherapy for tinnitus: much ado about nothing. Rev Neurol 2014; 59: pp. 164-174

  88. 88. House J.W., and Brackmann D.E.: Tinnitus: surgical treatment. Ciba Found Symp 1981; 85: pp. 204-216

  89. 89. Osaki Y., Nishimura H., Takasawa M., et al: Neural mechanism of residual inhibition of tinnitus in cochlear implant users. Neuroreport 2005; 16: pp. 1625-1628

  90. 90. McCracken C.B., and Grace A.A.: Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo. J Neurosci 2009; 29: pp. 5354-5363

  91. 91. Schlaepfer T.E., Cohen M.X., Frick C., et al: Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008; 33: pp. 368-377

  92. 92. Baldo P., Doree C., Lazzarini R., et al: Antidepressants for patients with tinnitus. Cochrane Database Syst Rev 2006; undefined:

  93. 93. Robinson S.: Antidepressants for treatment of tinnitus. Prog Brain Res 2007; 166: pp. 263-271

  94. 94. Dobie R.A.: Depression and tinnitus. Otolaryngol Clin North Am 2003; 36: pp. 383-388

  95. 95. Simpson J.J., and Davies W.E.: A review of evidence in support of a role for 5-HT in the perception of tinnitus. Hear Res 2000; 145: pp. 1-7

  96. 96. Geyer M.A., and Vollenweider F.X.: Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 2008; 29: pp. 445-453

  97. 97. Marriage J., and Barnes N.M.: Is central hyperacusis a symptom of 5-hydroxytryptamine (5-HT) dysfunction? J Laryngol Otol 1995; 109: pp. 915-921

  98. 98. Flor H., Nikolajsen L., and Staehelin Jensen T.: Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 2006; 7: pp. 873-881

  99. 99. King T., Vera-Portocarrero L., Gutierrez T., et al: Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 2009; 12: pp. 1364-1366

  100. 100. Moller A.R.: Tinnitus and pain. Prog Brain Res 2007; 166: pp. 47-53

  101. 101. Folmer R.L., Griest S.E., and Martin W.H.: Chronic tinnitus as phantom auditory pain. Otolaryngol Head Neck Surg 2001; 124: pp. 394-400

  102. 102. Shore S.E., and Zhou J.: Somatosensory influence on the cochlear nucleus and beyond. Hear Res 2006; 216–217: pp. 90-99

  103. 103. Herraiz C., Toledano A., and Diges I.: Trans-electrical nerve stimulation (TENS) for somatic tinnitus. Prog Brain Res 2007; 166: pp. 389-394

  104. 104. Shore S.E., Koehler S., Oldakowski M., et al: Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci 2008; 27: pp. 155-168

  105. 105. Dehmel S., Cui Y.L., and Shore S.E.: Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. Am J Audiol 2008; 17: pp. S193-S209

  106. 106. Hazell J.W., and Jastreboff P.J.: Tinnitus. I: Auditory mechanisms: a model for tinnitus and hearing impairment. J Otolaryngol 1990; 19: pp. 1-5

  107. 107. Weise C., Hesser H., Andersson G., et al: The role of catastrophizing in recent onset tinnitus: its nature and association with tinnitus distress and medical utilization. Int J Audiol 2013; 52: pp. 177-188

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Mar 13, 2017 | Posted by in NEUROLOGICAL IMAGING | Comments Off on Neuroscience of Tinnitus

Full access? Get Clinical Tree

Get Clinical Tree app for offline access