Radiopharmaceuticals





An unstable atom that undergoes radioactive decay in order to achieve stability is known as a radionuclide. The radiation these atoms emit can sometimes be used in medical imaging and therapy. Agents approved for such uses in humans that incorporate radioactive molecules are referred to as radiopharmaceuticals. Radiopharmaceuticals can portray physiology, biochemistry, or pathology in the body without causing any significant physiological effect. They are also referred to as “radiotracers” because they are given in subpharmacological doses that “trace” a particular physiological or pathological process in the body. This chapter presents general principles regarding clinically important radionuclides and radiopharmaceuticals, their production, radiolabeling, and quality assurance. Some terms related to radioactive imaging and therapy agents are defined in Box 4.1 .



Box 4.1

Important Terms Concerning Radiopharmaceuticals and Their Properties





  • Radionuclide: Unstable isotope of an element that transitions to greater stability through radioactive decay.



  • Radiopharmaceutical: FDA-approved radioactive/radiolabeled agent (i.e., drug) for imaging or therapy.



  • Activity: The rate of decay; expressed as curies (3.7 × 10 10 decays per second) or in metric units as becquerels (1 decay per second, 1 mCi = 37 MBq).



  • Half-life (or <SPAN role=presentation tabIndex=0 id=MathJax-Element-1-Frame class=MathJax style="POSITION: relative" data-mathml='T12′>T12T12
    T 1 2
    ): The time required for half the radioactive atoms in a sample to have decayed.



  • Equilibrium: Steady state or constant relationship that develops between a contained radioactive parent/daughter pair when the parent has a longer half-life than the daughter. Used for radionuclide production in a generator.



  • Carrier-free: Radiopharmaceutical free of contamination by other isotopes (stable or radioactive) of the same element. This is not to be confused with carrier molecule.



  • Carrier molecule: A chosen substance radiolabeled to allow evaluation or treatment of a particular physiologic parameter or cellular function, allowing or improving properties such as localization, accumulation, and/or background clearance.



  • Specific activity: The concentration of the radionuclide per unit volume or weight (i.e., in mCi/mg). High specific activity is optimal.



  • Radiative abundance: Also known as radiation yield; the likelihood that the decay of radioactive substance will result in desired emissions.



FDA, U.S. Food and Drug Administration.



Production of Radionuclides


Naturally occurring radionuclides are often heavy, toxic elements (e.g., uranium, actinium, thorium, radium, and radon) with very long half-lives (>1000 years). Most of these radioactive elements have no role in nuclear medicine, and radionuclides for clinical use are commonly produced artificially. Table 4.1 provides the physical properties of single-photon-emitting radionuclides used in medical imaging with a gamma camera. Dual-photon positron-emitting agents are listed in Table 4.2, and Table 4.3 notes several important radionuclides for therapy purposes. Appendix 2 contains a periodic table of the elements for reference.



Table 4.1

Physical Characteristics of Single-Photon Imaging Radionuclides for Clinical Use






































































Radionuclide Principal Mode of Decay Physical Half-Life Principal Photon Energy in keV (% abundance) Production Method
Mo-99 β 2.8 d 740 (12), 780 (4) Reactor
Tc-99m Isomeric transition 6 hr 140 (89) Generator (Mo-99)
I-131 β 8 d 364 (81) Reactor
I-123 EC 13.2 hr 159 (83) Cyclotron
Ga-67 EC 78.3 hr 93 (37), 185 (20), 300 (17), 395 (5) Cyclotron
Tl-201 EC 73.1 hr 69-83 (Hg x-rays), 135 (2.5), 167 (10) Cyclotron
In-111 EC 2.8 d 171 (90), 245 (94) Cyclotron
Xe-133 β 5.2 d 81 (37) Reactor
Co-57 EC 272 d 122 (86) Cyclotron
Cs-137 β 30.17 yrs 662 Reactor

β , beta minus; EC, electron capture


Table 4.2

Cyclotron-Produced Positron-Emitting Radionuclides: Physical Characteristics

Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and discussion. EJNMMI Phys . 2016;3(1):8.



































































Radionuclide Physical Half-Life (min) Positron Energy E max (MeV) E mean (MeV) Maximum Range in Soft Tissue (mm) Mean Range in Soft Tissue (mm)
C-11 20.4 m 0.96 0.39 4.2 1.2
N-13 10 m 1.2 0.49 5.5 1.8
O-15 a 2 m 1.73 0.73 8.4 3.0
F-18 110 m 0.63 0.25 2.4 0.6
Ga-68 67.8 m 1.90 0.84 10.3 2.9
Rb-82 1.3 m 3.38 1.56 8.6 5.9
Zr-89 a 78.4 d 0.902 0.40 3.8 1.3
Cu-64 a 12.7 hr 0.653 0.28 2.5 0.7

a Experimental applications



Table 4.3

Radionuclides Commonly Used for Therapeutic Applications















































































Beta Minus Emitters
Radionuclide Half-Life E max (MeV) E ave (MeV) Maximum Particle Range (mm) Mean Particle Range (mm) Gamma (γ) Photons Suitable for Imaging Examples of Uses
Iodine-131 (I-131) 8.01 days 0.606 0.81 2.4 0.4 364 keV (81%) Thyroid cancer, hyperthyroidism
Yttrium-90 (Y-90) 64.1 2.28 0.94 11.3 3.6 No γ; Bremsstrahlung radiation CD20 Antibodies: lymphoma
Microspheres:
Colon cancer hepatic metastases
Hepatocellular cancer
Lutetium-177 (Lu-177) 6.7 d 0.50 0.14 1.7 0.28 208 (11%) Neuroendocrine tumor
Samarium-153 (Sm-153) 46.3 hr 0.81 0.22 3.1 0.7 103 (29%) Bone metastases
Rhenium-186 (Re-186) 3.7 d 1.07 0.33 3.6 1.2 137 keV (9%) Bone metastases
Strontium-89 (Sr-89) 50.5 days 1.496 8.0 2.4 910 (0.01%) Bone metastases
Phosphorus-32 (P-32) 14.3 days 1.71 0.70 7.9 2.6 None Bone metastases, a intraperitoneal ovarian cancer metastases, pleuroperitoneal fistulas

















































Alpha Emitters
Agent Half-Life Decay E α (MeV) Principal Gamma (keV) and % Abundance Uses
Radium-223 (Ra-223) 11.4 days α multistep daughters also decay
<SPAN role=presentation tabIndex=0 id=MathJax-Element-2-Frame class=MathJax style="POSITION: relative" data-mathml='(αβ−)’>(??)(αβ−)
( α β − )
5–7.5 82, 154, 270 (γ total 1.1%) Prostate metastases
Actinium-225 (Ac-225) 10.0 days α 5.9 99 (5.8%) Experimental applications
Bismuth-213 (Bi-213) 45.6 min α/β 6.0 440 (27.3%) Experimental applications
Lead-212 (Pb-212) 10.64 hours β Bi-212 daughter
<SPAN role=presentation tabIndex=0 id=MathJax-Element-3-Frame class=MathJax style="POSITION: relative" data-mathml='αβ↑−’>??αβ↑−
α β ↑ −
6.1 238.6 (43.1%) Experimental applications
Astatine-211 (At-211) 7.2 hr α 6.0 500–900 keV (≤ 1%)
77–92 keV x-rays from Po-211
Experimental applications

a Some applications are not approved by the U.S. Food and Drug Administration.



Medical isotope production involves one of four methods: nuclear fission or neutron activation in a nuclear reactor, charged-particle bombardment in a particle accelerator (i.e., a cyclotron), or decay of a radioactive parent forming the desired agent in a radionuclide generator ( Fig. 4.1 ). Production methods are outlined in Table 4.4 . The various reactions involved in production can be annotated in equation form, noting the type of reaction, any particle involved in the transformation, as well as the initial isotope and final product, as presented in the examples listed in Box 4.2 .




Fig. 4.1


Radionuclide generator. Given the short 68-minute half-life of Ga-68 and the lengthy process required to label agents like Ga-68 DOTATATE, on-site production is optimal. Commercially available generators make Ga-68 available to sites distant from a cyclotron. The germanium-68 parent is produced in a cyclotron and bonded to a borosilicate column through a titanium dioxide bed. The daughter Ga-68 can be eluted with sterile HCl.

GalliaPharm 68Ge/68Ga Generator, courtesy of Eckert & Ziegler Radiopharma GmbH, Berlin, Germany.


Table 4.4

Production Methods of Medical Radioisotopes


















































































Characteristic Cyclotron Nuclear Reactor Radionuclide Generator
Fission Neutron Activation
Bombarding particle Proton, deuteron, alpha, tritium Neutron Neutron Production by decay
Product Proton excess Neutron excess Neutron excess Proton or neutron excess
Decay mode β +
Electron capture
β β Varies
Carrier-free Yes Yes No Yes
High specific activity Yes Yes No (difficult to separate chemically) Yes
Cost High a Low Low Tc-99m Low
Ga-68 High
Common medical radioisotopes produced β Mo-99
I-131
Xe-133
Cs-137
P-32
Sr-89
Sm-153
Mo-99
I-131 b
β + F-18
C-11
N-13
O-15
Zr-89
Ga-68
Rb-82
Electron capture Tl-201
I-123
Ga-67
In-111
I-125
Cr-51
Isomeric transition Tc-99m
Kr-81m

β , Beta minus; β + , positron emission.

a Historically higher than reactor production; F-18 for fluorodeoxyglucose (FDG) now economical.


b From 130 Te (n, γ) 131 Te <SPAN role=presentation tabIndex=0 id=MathJax-Element-4-Frame class=MathJax style="POSITION: relative" data-mathml='I(βI–)→’>I(?I)I(βI–)→
I ( β I – – ) →
131 I.



Box 4.2

Radionuclide Production Reaction Equation Examples


Common abbreviations: p, proton; n, neutron; d, deuteron; α , alpha; γ , gamma; f, fission; β , beta minus; EC, electron capture.


Equation shorthand format:




  • Target atom (irradiating particle, emission) radionuclide product



Examples:




  • Cyclotron Production


<SPAN role=presentation tabIndex=0 id=MathJax-Element-5-Frame class=MathJax style="POSITION: relative" data-mathml='Fluorine-18:18O(p,n)18F’>Fluorine18:18O(p,n)18FFluorine-18:18O(p,n)18F
Fluorine-18:18O(p,n)18F

<SPAN role=presentation tabIndex=0 id=MathJax-Element-6-Frame class=MathJax style="POSITION: relative" data-mathml='Gallium-67:68Zn(p,2n)67GaIodine-123:124Te(p,2n)123I’>Gallium67:68Zn(p,2n)67GaIodine123:124Te(p,2n)123IGallium-67:68Zn(p,2n)67GaIodine-123:124Te(p,2n)123I
Gallium-67:68Zn(p,2n)67GaIodine-123:124Te(p,2n)123I

<SPAN role=presentation tabIndex=0 id=MathJax-Element-7-Frame class=MathJax style="POSITION: relative" data-mathml='66Zn(d,−n)67Ga121Sb(α,−2n)’>66Zn(d,n)67Ga121Sb(?,2n)66Zn(d,−n)67Ga121Sb(α,−2n)
66Zn(d,−n)67Ga121Sb(α,−2n)

<SPAN role=presentation tabIndex=0 id=MathJax-Element-8-Frame class=MathJax style="POSITION: relative" data-mathml='66Zn(d,−n)67Ga121Sb(α,−2n)’>66Zn(d,n)67Ga121Sb(?,2n)66Zn(d,−n)67Ga121Sb(α,−2n)
66Zn(d,−n)67Ga121Sb(α,−2n)

<SPAN role=presentation tabIndex=0 id=MathJax-Element-9-Frame class=MathJax style="POSITION: relative" data-mathml='122Te(d,n)123I’>122Te(d,n)123I122Te(d,n)123I
122Te(d,n)123I

<SPAN role=presentation tabIndex=0 id=MathJax-Element-10-Frame class=MathJax style="POSITION: relative" data-mathml='Indirectproduction:124Xe(p,n)123Cs(→⊥(β↑+)(↓↑123)Xe(→⊥(β↑+)(↓↑123)I(carrier-free)’>Indirectproduction:124Xe(p,n)123Cs((?+)(123)Xe((?+)(123)I(carrierfree)Indirectproduction:124Xe(p,n)123Cs(→⊥(β↑+)(↓↑123)Xe(→⊥(β↑+)(↓↑123)I(carrier-free)
Indirectproduction:124Xe(p,n)123Cs(→⊥(β↑+)(↓↑123)Xe(→⊥(β↑+)(↓↑123)I(carrier-free)



  • Reactor Production


<SPAN role=presentation tabIndex=0 id=MathJax-Element-11-Frame class=MathJax style="POSITION: relative" data-mathml='Fissionreaction(n,f):235U+n01→236U→M4299o+SS0135n+2n01OR235U(n,f)99Mo’>Fissionreaction(n,f):235U+n01236UM4299o+SS0135n+2n01OR235U(n,f)99MoFissionreaction(n,f):235U+n01→236U→M4299o+SS0135n+2n01OR235U(n,f)99Mo
Fissionreaction(n,f):235U+n01→236U→M4299o+SS0135n+2n01OR235U(n,f)99Mo

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Aug 11, 2020 | Posted by in NUCLEAR MEDICINE | Comments Off on Radiopharmaceuticals

Full access? Get Clinical Tree

Get Clinical Tree app for offline access